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In this study, we model human letter-recognition times using neural networks
that extract visual features from real images of the letters. We focus on learning,
and on how different learning methods and other factors affect the correlation
between simulated reaction times and behavioural data. Specifically, we are in-
terested in studying the effect of 3 factors on this correlation: (i) utilisation of an
error signal during learning (supervised vs. unsupervised learning), (ii) whether

or not the letter labels exert a top-down influence on the extracted features,
and (iii) the effect of letter frequencies. To do so, we used Restricted Boltz-
mann Machines (RBMs), Back-propagation networks, and RBM/Perceptron
hybrid architectures. We find the highest correlations (r = 0.67) with super-

vised models when using top-down information of letter labels on the feature
layer during training, but only when the letters’ frequencies are taken into
account during learning. This study shows that to account for human letter

identification times, letter frequency seems to be the most important factor. In
addition, top down information of letter labels on the extracted visual features
appears to be essential (making the difference between a significant and non-
significant correlation). Whether or not the model is supervised makes little

difference in the correlation to human reaction time data, but fully unsuper-
vised models have more difficulty generating accurate categorisation for letters
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with very low frequencies.
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1. Introduction

In order not to be overwhelmed by massive unorganised sensory input,

but to perceive the world in a meaningful way, humans categorise objects,

events, and actions. Categorisation is beneficial, because unknown individ-

ual objects that fall into a known category tend to be of similar significance.

To categorise an object a perceiver needs to understand which features

of an object are relevant for it to be in a particular category and which

features form irrelevant (e.g., random) variability. Recognising letters of

the alphabet shares this general problem of similarity in variability. How-

ever, being two-dimensional and monochrome, letters present a tractable

problem and are, thus, suitable material to study the cognitive processes

involved in visual categorisation. Despite being among the more simple

of categorisation problems, human letter recognition is far from under-

stood. While there is a sheer intractable amount of experimental studies

on letter perception dating back more than a hundred years (see Mueller &

Weidemann(2012)1 for a review), the number of explanatory computational

models is still quite limited. While recognising isolated printed letters is not

a hard problem for pattern recognition algorithms, there are few computa-

tional models that connect and explain human behavioural data. Possibly

the best current model of human single letter perception 2 correlates simu-

lated letter-perception times with significant peaks in the EEG signal. This

model, however, does not learn and relies on a set of input features that

are defined by the modeller.

Since learning and feature extraction are among the main strengths of

neural models, it should be feasible to find a neural algorithm for learning

letter recognition and feature extraction. However, it is far less simple to

find a learning algorithm and architecture that are cognitively plausible

and to build a model that can simulate human behavioural data. With let-

ter recognition being a cortical process, and cortical learning being of the

unsupervised Hebbian-type3,4, a good starting point appears to be unsuper-

vised correlation learning. A Restricted Boltzmann Machine (RBM) uses

unsupervised correlation learning and is also a good algorithm for feature

extraction5.

In the study reported here, we use the RBM algorithm to extract letter

features from images of letters, presented to the model in the form of binary
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pixels. This is combined with supervised learning into several architectures

in order to vary two factors: (i) the top-down influence of the letter labels

on the feature extraction and (ii) the location and time at which supervision

is employed.

All these models are used to simulate reaction times by turning the

output units into spiking neurons and counting the time steps until the

first output unit spikes. The generated reaction times are correlated with

the human reaction times reported in Madec et al. (2012)6.

Furthermore, it has been reported that letter naming times correlate

strongly with letter frequencies7. While this finding provides very impor-

tant clues and constraints on the underlying representations and processes

involved in letter perception, it is in itself not yet a (causal mechanistic)

explanation. It is necessary to develop a cognitive model that can link rel-

ative exposure to letters during training to observable reaction times in

letter recognition. To establish such a link, in this study all architectures

are trained both with a training data set in which the number of items

for each letter correspond with known French letter frequencies and with

a training data set in which all letters are presented an equal number of

times.

2. Method

2.1. Simulations

In this study, we tested four main architectures: (i) an RBM / perceptron

hybrid, (ii) a pure RBM, (iii) an RBM fine-tuned with back-propagation,

and (iv) a pure back-propagation model. The hybrid model (called hybrid

because it combines two modules that use two different learning algorithms)

uses the RBM algorithm to extract a layer of letter feature and then clas-

sifies those into letters using the supervised delta-rule (see figure 1A). This

means that there is no effect of the letter labels on the features. The sec-

ond architecture is a pure RBM, in which images and labels are presented

on the input layer and a common hidden layer is trained (see figure 1B).

For testing, only the image is presented and the hidden activation is com-

puted. From the hidden activation the activation of the letter neurons is

generated. In this architecture learning is fully unsupervised, but the la-

bels have an influence on the emerging features on the hidden layer. The

third architecture is identical to the second in the first half of the training.

Then, the back-propagation algorithm is used to fine-tune the weights (see

figure 1C). In the final model, only back-propagation is used. All models
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are built, trained and tested with one, two, and three hidden layers. Every

architecture is trained with letter frequencies, with logarithmic frequencies,

and without any frequencies. This results in a 4×3×3 experimental design.

Fifty simulations (i.e., networks trained from scratch) were performed per

cell of the design. We computed the correlations of the reaction times of

every simulation with the reaction times of every other simulation within

one cell. Henceforth, the average of all correlations within one cell is called

the internal correlation.

Fig. 1. Three different architectures tested in this study: (A) a hybrid model using

unsupervised feature extraction with an RBM and then delta-rule training of the final
classification layer; (B) a fully unsupervised RBM network with the labels having a
top-down influence on the hidden layer; (C) a standard back-propagation network.

2.2. Neural Network Algorithms

2.2.1. Restricted Boltzmann Machines

An RBM5 consists of an input and hidden layer, where every unit in the in-

put layer is connected to every unit in the hidden layer, and each connection

has symmetrical weights (i.e., the same value is used for bottom-up recog-

nition and top-down down generation). There are no lateral connections

between the units of a layer. In addition, every unit has a bias.

Unit activations are binary and stochastic: The activation of a unit j is
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set by first computing the sum of its weighted input, including its bias bj :

zj = bj +
∑

xiwij (1)

where xi is the output of unit i and wij is the weight between units i and

j.

From this sum, the probability that unit j receives an activation of 1 is

computed using the logistic function:

P (xj = 1|zj) =
1

1 + e−zj
(2)

For training, after random initialisation of weights and biases (here, us-

ing Gaussian distribution with mean 0 and standard deviation 0.1), an input

vector is applied to the input layer and the hidden activations are computed

from it. Then the input is reconstructed from the hidden representations

by computing the downward activations. After that, a reconstructed hidden

activation is computed from the reconstructed input (see Fig. 2).

Fig. 2. The up and down algorithm: true hidden representations are generated from the

true input. From the true hidden representations the input is reconstructed and from
the reconstructed input the hidden representations are reconstructed.

Finally, the network learns by increasing the weights by the product

of the input and the hidden units’ activation minus the product of recon-

structed input and hidden units:

∆wij = ǫ((vihj)data − (vihj)rcon) (3)

where (vihj)data denotes the product of the input data vi and resulting

hidden activation hj , and (vihj)rcon is the same product but using the

reconstructed activations. Both weights and biases change during learning.

The weights of the input biases and hidden biases are changed accordingly.

The learning rule is analogue since biases can be treated as weights of

connections from units that are always 1.
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2.2.2. Training a Deep-Belief Network

Building up a fully unsupervised deep-belief network8 is done in several

steps. First, an RBM is trained on the input data with the algorithm de-

scribed above. Next, the weights of this network are fixed. The input is then

applied to this network with fixed weights and the output (at the hidden

layer) serves as the input to the next RBM that is build on top of this

one. This procedure continues until the desired depth of the overall neural

model. Note, however, that to train a fully unsupervised deep-belief net-

work, the final RBM does not only have the output of the pre-final RBM as

input, but also the labels. To test such a model after training, the weights

of the complete model have to be fixed. Then the input (without labels) is

presented to the network. Finally the activation of the labels are generated

top-down from the top layer of the model.

Subsequently, such a network can be fine-tuned with the back-

propagation algorithm (explained below). To do so, however, the top-layer

of the deep-belief network will serve as the pre-final layer and the represen-

tations of the labels will serve as a top-layer

2.2.3. Delta-Rule and Back-Propagation

The final layer of the hybrid model is trained using perceptron learning

(delta rule). To fine-tune the weights of our deep-belief networks, we use the

back-propagation algorithm.9 A back-propagation network can be regarded

as a multi-layer perceptron, or the perceptron as a special case (single-layer)

of a back-propagation network. Therefore, we will treat both algorithms in

this section.

The activation of a unit in both perceptron and back-propagation net-

work is computed in the same manner as in the RBM (see equation 1). Also,

the output yj of a unit j is computed with the logistic function analog to

the computation of the probability of a unit being 1 in the RBM. However,

since the output is not binary, no sampling is necessary:

yj =
1

1 + e−zj
(4)

The computation of the error and the weight change for a perceptron is

the same as for the final layer of a back-propagation network. In this kind

of supervised learning, the output of the network yk is subtracted from the

desired output y∗k to compute the error ek. The weight change ∆wik is then

calculated by multiplying ek by the activation xi of the input neuron and

the rate of change α:
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ek = y∗k − yk (5)

∆wik = αekxi (6)

For the back-propagation network the training of the weights to the pre-

final layers is somewhat more complicated. While the rule for the update

of the weights can stay the same as in the perceptron and the final layer,

the computation of the weight change (∆wik) is quite different. We can

only directly measure errors at the output layer. To get an approximation

of the error at the hidden layer, we distribute the error of an output unit j

to all the hidden units. The error is distributed proportional to the weight

of the connection from the hidden unit to the output unit j. This assumes

that the contribution of this hidden unit to the error is proportional to its

connection strength to that output unit. The same algorithm applies to all

the hidden layers of the network. Equation 7 shows the computation of the

error at the hidden layer.

ej = yj(1− yj)
∑

k

ekwjk (7)

The error ej at unit j is the sum of errors ek of units k to which this

hidden unit is projecting, times the weight wjk of the connections multiplied

with the output of the unit yj times (1− yj).

2.2.4. Simulating Reaction Times

To simulate reaction times after training the networks, we converted the

neurons representing the letters into spiking leaky integrator neurons 10,11.

Every neural unit i was represented as a membrane potential ui dynamically

changing over time using the following equation:

ui(t+ 1) = ui(t) + c
∑

k

(wjkyk)− l; (8)

The resting (and initial) value of the membrane potential was set to −70

(mV) for all units. Leakage l was set to 0.05 and a constant c used to

convert input to the unit into voltage was set to 0.2. Reaction times were

computed simply by counting the time steps until ui reached the threshold

of −55mV .
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2.3. Human Reaction Time Data

The human reaction time data were taken from the study of Madec et

al. (2012)6. In this study, a behavioural index of letter identification pro-

cesses was obtained by combining an immediate naming and a conditional

delayed naming task (see Figure 3). In the immediate naming task, partici-

pants simply named as quickly as possible a target letter that was displayed

on a computer screen. Then, on each trial, after naming the letter, partici-

pants performed a conditional delayed naming task. After a variable delay

following their naming response, either a green or a red circle (light grey

and dark grey in Fig. 3) was presented, and participants had to repeat the

target letter’s name they had just produced, only when they saw a green

circle.

Fig. 3. Schematic depiction of the task in the Madec et al. (2012) study.

The immediate naming measure is assumed to include two main sources

of variance that are related to the two main processes involved in letter nam-

ing. The first source of variance comes from visual identification processes,

and the second source is related to output articulatory processes.

Having the measures of immediate naming and delayed naming, it is pos-

sible to compute a simple linear regression with immediate naming times

being the dependent variable and delayed naming time being the indepen-

dent variable (i.e., naming times are explained by delayed naming times).

The residual values of the regression (i.e., the remaining unexplained vari-

ance), is likely to correspond to the time required by the visual identification

processes.
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Fig. 4. Immediate naming response times (msec) as a function of delayed naming re-

sponse times (msec), reproduced from Madec et al. (2012).

3. Results

In all the following simulations, having more than one hidden layer yielded

worse correlations with the reaction time data, rather than improving them.

Hence, we will not give further details of the simulations with more than

one hidden layer, but focus on the results of the architectures with one

hidden layer.

Table 1 summarises the results: For each model, it shows the corre-

lation between the simulated response times (averaged over the 50 runs)

and human data (averaged over subjects), as well as the internal correla-

tion (the correlation between different runs within the same architecture).

Given the degrees of freedom, the correlation with response times is sig-

nificant (p < 0.05) if r > 0.38, so three of the models simulate response

times that significantly (and positively) correlate with the human response

data. Importantly, these models also show very strong internal correlation,

indicating that the results are reliable and do not strongly depend on the

random initial connection weights or random sampling used in the RBM.

Significant correlations were only obtained when using a realistic letter-

frequency distribution during training. This reflects the importance of let-
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Table 1. Correlation of Simulated Reaction Times
with Behavioural Data and Models’ Internal Cor-
relation

architecture freq correlation int. correl.

hybrid no −0.22 0.09

yes 0.21 0.09

RBM no 0.13 0.23

yes 0.61 0.8

log 0.53 0.9

RBM + BP no −0.27 0.22

yes 0.67 0.99

BP no −0.17 0.57
yes 0.67 0.97

ter frequency as a predictor of human response times. However, in the pure

RBM model, the very low frequency items (such as K, W, X, Y, and Z)

did not result in any above-threshold activation. That is, they were not

properly learned. We attempted to solve this problem by using logarith-

mically transformed letter frequencies (increasing the relative frequency of

the infrequent letters). Although this was successful, it also reduced the

correlation with human data to r = 0.53.

Another solution to the problem of low-frequency letter recognition

turned out to be the fine-tuning of the RBM weights using back-propagation

training. In addition, this increased the correlation with human response

times to r = 0.67. For this model, the relation between simulated and actual

response times (for each letter) is plotted in Figure 5.

When the model was trained with back-propagation from the beginning,

the correlation was the same as in case of mixed RBM and back-propagation

training (r = 0.67). Also, this model did respond to low-frequency letters.

Hence, there was no benefit of applying the RBM prior to back-propagation.

The correlation between these latter models and the behavioural data

(r = 0.67) were substantially higher than the correlation between (French)

letter frequencies7 and the behavioural data (r = 0.49), indicating that the

model explains more than just the effect of letter frequencies.

4. Conclusions

In the study reported in this paper, we investigated the possibilities of mod-

elling human letter perception with Restricted Boltzmann Machines. We

found that fully unsupervised RBMs have problems learning low-frequency

letters, but when trained with the logarithmic frequencies, they perform

adequately and can be considered a valuable model of human letter per-
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Fig. 5. Relation between simulated and behavioural data for RBM with back-prop fine-
tuning.

ception. However, RBMs fine-tuned with back-propagation are superior to

pure RBMs and, since pure back-propagation networks perform on the same

level, it seems that nothing is gained by prior training with the RBM al-

gorithm. Altogether, it appears that RBMs, while faster to train, are not

superior to back-propagation networks when it comes to the modeling of

human reaction time data. Furthermore, it seems that top down informa-

tion of letter labels on the extracted visual features appear to be essential,

since only the hybrid failed at simulating reaction times that showed sig-

nificant correlations with human data. Finally, this study could confirm

the essential role of letter frequency as a strong factor of letter recognition

times and successfully distinguished cognitive architectures that link letter

frequencies with reaction times from those that do not.
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