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In this study, we model human letter-recognition times using neural networks
that extract visual features from real images of the letters. We focus on learning,
and on how different learning methods and other factors affect the correlation
between simulated reaction times and behavioural data. Specifically, we are in-
terested in studying the effect of 3 factors on this correlation: (i) utilisation of an
error signal during learning (supervised vs. unsupervised learning), (ii) whether
or not the letter labels exert a top-down influence on the extracted features,
and (iii) the effect of letter frequencies. To do so, we used Restricted Boltz-
mann Machines (RBMs), Back-propagation networks, and RBM /Perceptron
hybrid architectures. We find the highest correlations (r = 0.67) with super-
vised models when using top-down information of letter labels on the feature
layer during training, but only when the letters’ frequencies are taken into
account during learning. This study shows that to account for human letter
identification times, letter frequency seems to be the most important factor. In
addition, top down information of letter labels on the extracted visual features
appears to be essential (making the difference between a significant and non-
significant correlation). Whether or not the model is supervised makes little
difference in the correlation to human reaction time data, but fully unsuper-
vised models have more difficulty generating accurate categorisation for letters
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with very low frequencies.
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1. Introduction

In order not to be overwhelmed by massive unorganised sensory input,
but to perceive the world in a meaningful way, humans categorise objects,
events, and actions. Categorisation is beneficial, because unknown individ-
ual objects that fall into a known category tend to be of similar significance.
To categorise an object a perceiver needs to understand which features
of an object are relevant for it to be in a particular category and which
features form irrelevant (e.g., random) variability. Recognising letters of
the alphabet shares this general problem of similarity in variability. How-
ever, being two-dimensional and monochrome, letters present a tractable
problem and are, thus, suitable material to study the cognitive processes
involved in visual categorisation. Despite being among the more simple
of categorisation problems, human letter recognition is far from under-
stood. While there is a sheer intractable amount of experimental studies
on letter perception dating back more than a hundred years (see Mueller &
Weidemann(2012)* for a review), the number of explanatory computational
models is still quite limited. While recognising isolated printed letters is not
a hard problem for pattern recognition algorithms, there are few computa-
tional models that connect and explain human behavioural data. Possibly
the best current model of human single letter perception 2 correlates simu-
lated letter-perception times with significant peaks in the EEG signal. This
model, however, does not learn and relies on a set of input features that
are defined by the modeller.

Since learning and feature extraction are among the main strengths of
neural models, it should be feasible to find a neural algorithm for learning
letter recognition and feature extraction. However, it is far less simple to
find a learning algorithm and architecture that are cognitively plausible
and to build a model that can simulate human behavioural data. With let-
ter recognition being a cortical process, and cortical learning being of the
unsupervised Hebbian-type®*, a good starting point appears to be unsuper-
vised correlation learning. A Restricted Boltzmann Machine (RBM) uses
unsupervised correlation learning and is also a good algorithm for feature
extraction®.

In the study reported here, we use the RBM algorithm to extract letter
features from images of letters, presented to the model in the form of binary
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pixels. This is combined with supervised learning into several architectures
in order to vary two factors: (i) the top-down influence of the letter labels
on the feature extraction and (ii) the location and time at which supervision
is employed.

All these models are used to simulate reaction times by turning the
output units into spiking neurons and counting the time steps until the
first output unit spikes. The generated reaction times are correlated with
the human reaction times reported in Madec et al. (2012)5.

Furthermore, it has been reported that letter naming times correlate
strongly with letter frequencies”. While this finding provides very impor-
tant clues and constraints on the underlying representations and processes
involved in letter perception, it is in itself not yet a (causal mechanistic)
explanation. It is necessary to develop a cognitive model that can link rel-
ative exposure to letters during training to observable reaction times in
letter recognition. To establish such a link, in this study all architectures
are trained both with a training data set in which the number of items
for each letter correspond with known French letter frequencies and with
a training data set in which all letters are presented an equal number of
times.

2. Method
2.1. Stmulations

In this study, we tested four main architectures: (i) an RBM / perceptron
hybrid, (ii) a pure RBM, (iii) an RBM fine-tuned with back-propagation,
and (iv) a pure back-propagation model. The hybrid model (called hybrid
because it combines two modules that use two different learning algorithms)
uses the RBM algorithm to extract a layer of letter feature and then clas-
sifies those into letters using the supervised delta-rule (see figure 1A). This
means that there is no effect of the letter labels on the features. The sec-
ond architecture is a pure RBM, in which images and labels are presented
on the input layer and a common hidden layer is trained (see figure 1B).
For testing, only the image is presented and the hidden activation is com-
puted. From the hidden activation the activation of the letter neurons is
generated. In this architecture learning is fully unsupervised, but the la-
bels have an influence on the emerging features on the hidden layer. The
third architecture is identical to the second in the first half of the training.
Then, the back-propagation algorithm is used to fine-tune the weights (see
figure 1C). In the final model, only back-propagation is used. All models
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are built, trained and tested with one, two, and three hidden layers. Every
architecture is trained with letter frequencies, with logarithmic frequencies,
and without any frequencies. This results in a 4 x 3 X 3 experimental design.
Fifty simulations (i.e., networks trained from scratch) were performed per
cell of the design. We computed the correlations of the reaction times of
every simulation with the reaction times of every other simulation within
one cell. Henceforth, the average of all correlations within one cell is called
the internal correlation.
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Fig. 1. Three different architectures tested in this study: (A) a hybrid model using
unsupervised feature extraction with an RBM and then delta-rule training of the final
classification layer; (B) a fully unsupervised RBM network with the labels having a
top-down influence on the hidden layer; (C) a standard back-propagation network.

2.2. Neural Network Algorithms
2.2.1. Restricted Boltzmann Machines

An RBM?® consists of an input and hidden layer, where every unit in the in-
put layer is connected to every unit in the hidden layer, and each connection
has symmetrical weights (i.e., the same value is used for bottom-up recog-
nition and top-down down generation). There are no lateral connections
between the units of a layer. In addition, every unit has a bias.

Unit activations are binary and stochastic: The activation of a unit j is
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set by first computing the sum of its weighted input, including its bias b;:

2= b+ ) wiwy (1)
where z; is the output of unit ¢ and w;; is the weight between units ¢ and
J.

From this sum, the probability that unit j receives an activation of 1 is
computed using the logistic function:
Py =112) = 1= 2
For training, after random initialisation of weights and biases (here, us-
ing Gaussian distribution with mean 0 and standard deviation 0.1), an input
vector is applied to the input layer and the hidden activations are computed
from it. Then the input is reconstructed from the hidden representations
by computing the downward activations. After that, a reconstructed hidden
activation is computed from the reconstructed input (see Fig. 2).

true hidden reconstructed hidden

true input reconstructed input

Fig. 2. The up and down algorithm: true hidden representations are generated from the
true input. From the true hidden representations the input is reconstructed and from
the reconstructed input the hidden representations are reconstructed.

Finally, the network learns by increasing the weights by the product
of the input and the hidden units’ activation minus the product of recon-
structed input and hidden units:

Aw;j = €((vihj)aata — (Vifj)rcon) (3)
where (vihj)data denotes the product of the input data v; and resulting
hidden activation hj;, and (vihj)rcon is the same product but using the
reconstructed activations. Both weights and biases change during learning.
The weights of the input biases and hidden biases are changed accordingly.

The learning rule is analogue since biases can be treated as weights of
connections from units that are always 1.
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2.2.2. Training a Deep-Belief Network

Building up a fully unsupervised deep-belief network® is done in several
steps. First, an RBM is trained on the input data with the algorithm de-
scribed above. Next, the weights of this network are fixed. The input is then
applied to this network with fixed weights and the output (at the hidden
layer) serves as the input to the next RBM that is build on top of this
one. This procedure continues until the desired depth of the overall neural
model. Note, however, that to train a fully unsupervised deep-belief net-
work, the final RBM does not only have the output of the pre-final RBM as
input, but also the labels. To test such a model after training, the weights
of the complete model have to be fixed. Then the input (without labels) is
presented to the network. Finally the activation of the labels are generated
top-down from the top layer of the model.

Subsequently, such a network can be fine-tuned with the back-
propagation algorithm (explained below). To do so, however, the top-layer
of the deep-belief network will serve as the pre-final layer and the represen-
tations of the labels will serve as a top-layer

2.2.3. Delta-Rule and Back-Propagation

The final layer of the hybrid model is trained using perceptron learning
(delta rule). To fine-tune the weights of our deep-belief networks, we use the
back-propagation algorithm.? A back-propagation network can be regarded
as a multi-layer perceptron, or the perceptron as a special case (single-layer)
of a back-propagation network. Therefore, we will treat both algorithms in
this section.

The activation of a unit in both perceptron and back-propagation net-
work is computed in the same manner as in the RBM (see equation 1). Also,
the output y; of a unit j is computed with the logistic function analog to
the computation of the probability of a unit being 1 in the RBM. However,
since the output is not binary, no sampling is necessary:

1
- - 4
I+e % (4)

The computation of the error and the weight change for a perceptron is

Yj

the same as for the final layer of a back-propagation network. In this kind
of supervised learning, the output of the network y; is subtracted from the
desired output y; to compute the error e;. The weight change Awy, is then
calculated by multiplying e; by the activation x; of the input neuron and
the rate of change «:
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ex = Yp — Yk (5)
Aw;, = aepx; (6)

For the back-propagation network the training of the weights to the pre-
final layers is somewhat more complicated. While the rule for the update
of the weights can stay the same as in the perceptron and the final layer,
the computation of the weight change (Awj;) is quite different. We can
only directly measure errors at the output layer. To get an approximation
of the error at the hidden layer, we distribute the error of an output unit j
to all the hidden units. The error is distributed proportional to the weight
of the connection from the hidden unit to the output unit j. This assumes
that the contribution of this hidden unit to the error is proportional to its
connection strength to that output unit. The same algorithm applies to all
the hidden layers of the network. Equation 7 shows the computation of the
error at the hidden layer.

ej = yi(1—y;) D exwy (7)

k

The error e; at unit j is the sum of errors e; of units k to which this
hidden unit is projecting, times the weight w;; of the connections multiplied
with the output of the unit y; times (1 —y;).

2.2.4. Simulating Reaction Times

To simulate reaction times after training the networks, we converted the
neurons representing the letters into spiking leaky integrator neurons 011,
Every neural unit ¢ was represented as a membrane potential u; dynamically

changing over time using the following equation:

wilt +1) = wi(t) + ¢ Y (winyr) = 1; (®)
k

The resting (and initial) value of the membrane potential was set to —70
(mV) for all units. Leakage | was set to 0.05 and a constant ¢ used to
convert input to the unit into voltage was set to 0.2. Reaction times were
computed simply by counting the time steps until u; reached the threshold
of —55mV.
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2.3. Human Reaction Time Data

The human reaction time data were taken from the study of Madec et
al. (2012)C. In this study, a behavioural index of letter identification pro-
cesses was obtained by combining an immediate naming and a conditional
delayed naming task (see Figure 3). In the immediate naming task, partici-
pants simply named as quickly as possible a target letter that was displayed
on a computer screen. Then, on each trial, after naming the letter, partici-
pants performed a conditional delayed naming task. After a variable delay
following their naming response, either a green or a red circle (light grey
and dark grey in Fig. 3) was presented, and participants had to repeat the
target letter’s name they had just produced, only when they saw a green
circle.

(Delayed naming
measure (msec),

300 msec Immediate Variable del 1000 msec 750 msec
) naming fal abed::ntsiy
measure (msec) 0002000
20%!

Fig. 3. Schematic depiction of the task in the Madec et al. (2012) study.

The immediate naming measure is assumed to include two main sources
of variance that are related to the two main processes involved in letter nam-
ing. The first source of variance comes from visual identification processes,
and the second source is related to output articulatory processes.

Having the measures of immediate naming and delayed naming, it is pos-
sible to compute a simple linear regression with immediate naming times
being the dependent variable and delayed naming time being the indepen-
dent variable (i.e., naming times are explained by delayed naming times).
The residual values of the regression (i.e., the remaining unexplained vari-
ance), is likely to correspond to the time required by the visual identification
processes.
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Fig. 4. Immediate naming response times (msec) as a function of delayed naming re-
sponse times (msec), reproduced from Madec et al. (2012).

3. Results

In all the following simulations, having more than one hidden layer yielded
worse correlations with the reaction time data, rather than improving them.
Hence, we will not give further details of the simulations with more than
one hidden layer, but focus on the results of the architectures with one
hidden layer.

Table 1 summarises the results: For each model, it shows the corre-
lation between the simulated response times (averaged over the 50 runs)
and human data (averaged over subjects), as well as the internal correla-
tion (the correlation between different runs within the same architecture).
Given the degrees of freedom, the correlation with response times is sig-
nificant (p < 0.05) if r > 0.38, so three of the models simulate response
times that significantly (and positively) correlate with the human response
data. Importantly, these models also show very strong internal correlation,
indicating that the results are reliable and do not strongly depend on the
random initial connection weights or random sampling used in the RBM.

Significant correlations were only obtained when using a realistic letter-
frequency distribution during training. This reflects the importance of let-
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Table 1. Correlation of Simulated Reaction Times
with Behavioural Data and Models’ Internal Cor-
relation

[ architecture [ freq [ correlation [ int. correl. l

hybrid no —0.22 0.09
yes 0.21 0.09
RBM no 0.13 0.23
yes 0.61 0.8
log 0.53 0.9
RBM + BP | no —0.27 0.22
yes 0.67 0.99
BP no —-0.17 0.57
yes 0.67 0.97

ter frequency as a predictor of human response times. However, in the pure
RBM model, the very low frequency items (such as K, W, X, Y, and Z)
did not result in any above-threshold activation. That is, they were not
properly learned. We attempted to solve this problem by using logarith-
mically transformed letter frequencies (increasing the relative frequency of
the infrequent letters). Although this was successful, it also reduced the
correlation with human data to r = 0.53.

Another solution to the problem of low-frequency letter recognition
turned out to be the fine-tuning of the RBM weights using back-propagation
training. In addition, this increased the correlation with human response
times to r = 0.67. For this model, the relation between simulated and actual
response times (for each letter) is plotted in Figure 5.

When the model was trained with back-propagation from the beginning,
the correlation was the same as in case of mixed RBM and back-propagation
training (r = 0.67). Also, this model did respond to low-frequency letters.
Hence, there was no benefit of applying the RBM prior to back-propagation.

The correlation between these latter models and the behavioural data
(r = 0.67) were substantially higher than the correlation between (French)
letter frequencies” and the behavioural data (r = 0.49), indicating that the
model explains more than just the effect of letter frequencies.

4. Conclusions

In the study reported in this paper, we investigated the possibilities of mod-
elling human letter perception with Restricted Boltzmann Machines. We
found that fully unsupervised RBMs have problems learning low-frequency
letters, but when trained with the logarithmic frequencies, they perform
adequately and can be considered a valuable model of human letter per-
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Fig. 5. Relation between simulated and behavioural data for RBM with back-prop fine-
tuning.

ception. However, RBMs fine-tuned with back-propagation are superior to
pure RBMs and, since pure back-propagation networks perform on the same
level, it seems that nothing is gained by prior training with the RBM al-
gorithm. Altogether, it appears that RBMs, while faster to train, are not
superior to back-propagation networks when it comes to the modeling of
human reaction time data. Furthermore, it seems that top down informa-
tion of letter labels on the extracted visual features appear to be essential,
since only the hybrid failed at simulating reaction times that showed sig-
nificant correlations with human data. Finally, this study could confirm
the essential role of letter frequency as a strong factor of letter recognition
times and successfully distinguished cognitive architectures that link letter
frequencies with reaction times from those that do not.
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