Corpus Studio Manual

Version 3.6
First edition: September 28, 2009
This edition: November 25, 2019

Erwin R. Komen
Radboud University Nijmegen

Technical Service Group, Humanities Lab

Contents

1
2
3

4

6

7

8

INErOAUCTION ...ttt ettt et ettt sbe et 5
INSTAITATION. ..ottt et sttt e 5
SEEEIIIES .ttt ettt ettt ettt ettt et e st e et e st e e bt e eab e e s bt e e tbeebeeeat e e bt e enbeenbeeenbeenbeeenbeenaenn 6
3.1 The “General” tab.......cociiiiiiiieiiiee ettt et e 6
3.2 The “Project EAItOr”ccciiiiieiieie ettt ettt e s 7
COrPUS TESEATCH PIOJECES ...uvvieeiiiieeiieesieeeeieeeeieeerreeeeereeetaeeetreesraeeeseeessseeeesseeessseeensseesnnns 8
4.1 The “General” tab.......cccoviiiiiiiiiieie e 9
4.2 The “Files” tab.....coouiiiiiiieie ettt et 10
4.3 The “Period Editor” tabcccieiiiiiieieeiieee ettt 11
4.3.1 Definition Of PEriodseeecviiieiiieiie et e e 12
4.3.2 Period diVISIONS ..cc.eeruieriiriiriieteeiesiteie ettt ettt ettt st et siae bt 13
433 Saving period INFOrMAtION.........cccuieeiieeeiieeeiie ettt e e veeesaaeeea 14
4.4 The “Definitions™ taD.....cc.eiiiiiiieiieeiieie ettt ettt teebeessaeeeeens 15
4.5 The “Query Editor” tab........ccccoiiiiiiiiiieciie ettt e 16
4.6 The “Constructor EditOr” tab........c.ccoiiiiiiiiiiiieeiieeecee e 18
4.7 The “Hierarchy” tab.......cccccoiiiiiiiiieeiie ettt e e e e e e 21
4.8 The “TTEE™ tAD .e.ueiiieiieiieeiieteee ettt ettt sttt st 22
4.9 The “Output MONItOr” taDcccciiieiiieeciie ettt eree s e e sae e e sereeeeeaee e 23
4.10 The “ReSUIS™ taD . .cotiiiiiiiiiiiiectet ettt ettt st 24
41T The “VIBWET” 1aDiiiiiiiiiiie ettt sttt et e s e b 26
Walkthrough #1: make a research project from scratchcoccoeviiiiiiiiiniiiiieeee, 26
5.1 TNEFOAUCTION ..eniiiiiiiiiie ettt ettt ettt et e st e e e saae e 26
5.2 Create @ NEW PIOJECE ...eeuiiriiieitieiiietie et etteete et e steeteesateebeessaeesaesnseenseessseenseennseenne 26
5.2.1 Specify general INformationoccveeeciiieeiie e e 27
5.2.2 Get period defiNItioNS........cccuiiriiiriieiieeie ettt 28
5.2.3 Import a “definitions” filecociieriiiieiiii e 28
5.2.4 Create YOUT OWIN QUETICSeeuvieuierreeirerteeteensreenseessaeeseessseenseessseensessssessseesssennne 28
5.2.5 Putting the qUETIESs 1N OTAETccoviieiiieeiiieeciee ettt eree e e e ereeenaaeaens 29
5.3 VErify YOUT PIOJECL .ouuvieuiiiiiiieiieeie ettt ettt ettt ettt et et e et esnae e b e ssbeenseeenae e 31
54 EXCCULE YOUI PIOJECE....uiiiiiiieiiieeiiieeitteeeitteeeiteeesteeessteeessseeessseeesseessseeesseeessseeensseenns 32
5.5 Look through the reSultS.........cccocuieiiiiiiiiieieee e 32
Walkthrough #2: creating a project with the wizard..........c..ccocvveveiiiniiiicceeee e, 34
6.1 Cesax: prepare a COTpUS SEATCH......cc.iiiiiiiiieiiieiieeieeiee ettt ete e e sereeeeeenae e 34
6.2 CorpusStudio: creating @ NEW PrOJECL......cveerrurieriireeeiieerreeerreeersteesreeesseeesseeessaeeens 36
COMMON LASKS ...ttt ettt et sttt st b e et sbeenbe et 39
7.1 Restricting input to part 0f @ COTPUSveeeiuiiiiiiiieiiieeeiee et ens 39
7.2 WOTACOUNES....cueiiieiieiieeiiest ettt ettt sttt ettt ettt et sbe e st e bt et e eaeenees 40
AVANCEA TASKS ...ttt ettt et 40
8.1 Specifying input files manually...........cccccooriiriiiiiiiiiiie e 40
8.2 Using files with different eXentions...........cccccueeerieeeeieeriieesie et eeree e 40
8.3 Creating period defiNItIONSceeevuieriieiiieiieeieee ettt ettt siae e e 40
8.3.1 Make a new period information file..........ccccoeevieeiiiiniiiicciicee e 40
8.3.2 Add @PEriOd...c..eiiiieiiieiieie ettt 41
8.3.3 Add teXts t0 @ PEIIOA ..ocuuvieeiiieciiieeiie ettt e 41
8.3.4 Add Period GrOUPS ...ccuvieeieeiiieiieeiie ettt ettt ettt ettt st e aae e ennas 42
8.3.5 Clause COUNTINE ...ccciuviieiiieeiiiieeiieeeieeeeteeeeteeesteeeseaeeessaeeesaeessseeessseeessseeennseeennns 42
8.4 USING XQUETY PIOJECLS c.veevieeutieireeiienireeteeriteeteenseeeseenseesseesseessseeseessseesseessseenseessnes 43
8.4.1 Creating an Xquery-pSAX PIOJECTuveeurieeruiieeiiieeeiieeeieeesteeesreeeereeeseneeeneseeenes 43

8.4.2 QUETY fOTMAL ..ottt ettt ettt e s sb e et e s aeeeseeennas 43

Radboud University Nijmegen, Centre for Language Studies

8.4.3 Accessing constituents through Xquery........ccocoeeviiiiiiniiiiiiniceeeceeeee, 45
8.4.4 SUDCAtEZOTISATIONuveieeiiieeiiieeiieeeieeeeteeeeteeesteeeseaeeeeaeeesaeeesseeessseeessseeennseeennns 45
8.4.5 Executing an XqUETY PIrOJECE.....ccueeruieruieeiieniieeiieniieeteesieesaeenseessseenseesnseenseesnnes 45
8.5 Producing a database of 1esults (XqUETY).....cccveeriieeriiieiiieeie e 46
8.6 Queries on a database Of TESUILScc.eeeiiiiiiiiiiiiiccee e 48
8.7 The leXICOMN OPTION ..cc.uviieiiieeeiiieeciieeetee et e eeite e et e e e tteeeteeessbeeeseseeessseeessseesenseeensseeans 49
Frequently asked qUESTIONSccuiiiiiiiiiiiieeiieeie ettt ettt e 50
9.1 How do I get the number of results per teXt?cccceevvieerieeeiiieeieeee e, 50
9.2 Why do I miss results if [use the complement as input?cccceeevveriiereenneennnens 50
L AN 075155 1 1d £ b QUSRS 52
10.1 The results XIML fIl€cocuiiiiiiiieiiiciiee ettt 52
10.2 Schema for xml formats USEdcoouiiiiiiiiiiiiiiieieeee e 53
10.3 Useful Xquery function definitionscccueerieeiiierieeiiienieeieeieeie e 53
10.3.1 Convert a chain iNt0 @ SEQUENCEcueeeriieerieeeriiieerreeeieeeeeieeeeteeesreeesreeessseeens 54
10.4 Built in functions for Xquery-psdX projectsc.ccevueeriierieeriienieniieeniesee e 55
L RN | E OSSR 55
LOA.2 ANttt b ettt b ettt 55
1043 ANEIAL oottt 55
LO44 AT ettt 55
LOA.5 AV ettt ettt et b et e et re e e 56
LO4.0 AV ettt ettt ettt e 56
LO.4.7 BACK .ttt ettt b et et ne e 56
10.4.8 BeIOTC .ottt et 57
L T O SRR 57
LO.4. 10 CRINEXL. ottt ettt ettt et et e b ettt 57
10.4. 11 ChNEXEIAL ...eieieeeeeee e 57
L0412 CRLEN ottt ettt sttt 57
L T 03 1 V2SR 58
LOA. T4 DIiSteniiiiiieeteeiee ettt et ettt b et nae et 58
L T B {5 o SRS PRRSRRR 58
10416 DOCROOL......ciiiiiiiiiiieet ettt sttt 58
L B A 25 4 01 (7SR 59
JO.4.18 FRALUIE «...eeeiiiiieieeee ettt et sttt e 59
L0419 HASE oottt e 59
L [T SRS 59
LOA.21T ISNEW ittt ettt ettt et b et et e st e 59
LO.4.22 LXK teiiiiieie ettt ettt ettt et ettt ettt e ettt e e nt et e e te st e beenteeneenseenne e 60
LO.4.23 LINC..eiiiiieeiieeieeee ettt ettt et ettt ettt et 60
10.4.24 LOCALION ..eeutiiitieite ettt ettt ettt et et ettt e et e e st e e bt e sateebee et e enee 60
10.4.25 IMACRESeouiiiieieceeeeee ettt 60

L O I Y [T T SRR 61
10.4.27 INOAETEXE c.uviieiiieeiieeiteeiie ettt ettt ettt et e et e st e e taeenbeebeessseenseeeaseenne 61
L © 1 1< TSP 61
LO.4.29 OUL ittt ettt et b et 62
10.4.30 PerIOAGIP...uviiiiiieeiiie ettt et e et e et e e e e e etaeeeaaeeesbeeesnneeesnseeennseeens 62
10.4.31 PRIaSETEXt ..cocuieiiieiieiie ettt ettt et eae e eaee e 62
10432 RANAOM...ciiiiiiiiiii ettt ettt st be e st e et 62
10.4.33 RENUM ..ot 63
10.4.34 REfSLALE ..oouiiieieieeeeeee ettt 63
10.4.35 RELALES .ouveiiiiiieieeee et 63

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 3

CorpusStudio

10.4.36
10.4.37
10.4.38
10.4.39
10.4.40
10.4.41
10.4.42
10.4.43
10.4.44
10.4.45
10.4.46

REAUCE ..o e e 63
REITIEVE ..ot e e e e e e e e e e e e e ennaaraees 63
ROOE NOAC.......eeiiiieieeee e et ee e e 64
N 110 S 11 T). GO OSSR 64
N1 92X 15 8 1o SO TSRO 64
STACK .ottt e e e e e e e e e e reeeeeeeaians 64
SEOT ..ttt ettt e et e e e e e e e e e reaaeeeeeeeetarrraaaaeeenan 64
TEXESIZE oottt e et e e e e e e e et e e e e e e e enraraees 64
TIMDIPTED .ttt ettt et e 65
;o 66
WOTAS. ...t e et e e e e e et e e e e e taee e e eeraeeeen 66

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

1 Introduction

Corpus research can be done with a variety of programs, which usually are command-line
oriented. The program “CorpusStudio” provides a shell between the user and the programs
doing the actual searching in the corpora. Specifically, CorpusStudio handles two corpus
research software programs.

(1) CorpusSearch — This program is meant to work with Penn-Treebank syntactically
annotated corpora. The program itself is written in Java, and executed from the
command-line in Windows.

(2) Query — This program is an open-source one, developed by Saxon. It is not aimed at
corpus work as such, but provides a general implementation of the Xquery language.
This Xquery language (and its associated Xsl as well as Xpath) is a well guided public
domain initiative for general research work in XML databases. When corpora are coded
in XML, then Xquery provides one of the most generally accepted ways to query them.

The basic unit in CorpusSearch is the Corpus Research Project, containing the following
elements:

a) General information about a corpus research project, such as date, author, purpose.
b) All the queries used by the project.

¢) The order in which the queries are to be used.

d) The output files produced by successive application of the queries.

e) A list of input files to be used for the queries.

Since the corpus research projects comprise all the data needed to perform a particular task on
a (selectable) set of input files, they offer many advantages. Some of them are:

e Exchange of corpus research projects between researchers. It will be easy to see just
how your colleague has dealt with the data.

e Assistance in teaching courses on corpus research.
e A form for students to hand in assignments on corpus research work.

e An easier way to track errors in your corpus research projects.

2 Installation

The CorpusStudio program should be installed straight from the internet on the following
address:

http://erwinkomen.ruhosting.nl/software/CorpusStudio

You will find directions over there. Instead of having a downloadable package, the
CorpusStudio is a “ClickOnce” application. When you install it from the location above, it will
keep track of changes and ask you if you would like to install an updated version if and when
such a version becomes available. Mind you—ryou are not being tracked or registered as a user!

CorpusStudio only runs on Windows (XP and above) computers, and it assumes you have
Microsoft .Net runtime version 3.5 (or higher) installed on your computer.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 5

http://erwinkomen.ruhosting.nl/software/CorpusStudio

CorpusStudio

3 Settings

This section describes the general settings for CorpusStudio. If you are just starting, and do not
want to bother too much with the details, you can skip this section. Do come back to it later on,
when you would like to fine-tune CorpusStudio for your own purposes!

Selecting Tools/Settings brings you to the window that allows general settings to the

CorpusStudio program to be made. This window contains a number of important, global
settings, which are listed here.

3.1 The “General” tab
We will first look at the General tab page (see Figure 1).

< Adjust Settings for CorpusStudio = ===

Settings file: ID:\D ata files > ml\CorpusStudioS ettings. =ml

General | Froject Types I Project Editor

Working Directary Iu:\data fileshzorporabCorpusStudio _I
[Preferences Period ordering

™ Shaw the command window © Fromyear first (01,012, 014, 02, 023)

| | Keep temparary files - don't delete garbage = Until pear first (01, 012, 02, 023, 03)

¥ Switch to [Output M onitor] upon query execution
V| Clear log before query execution
v Sunchronize when opening a praject

v Synchronize when closing a project

Automatic dive change(z): |G>U

I aimum number of examples per item: ID
Mormalized size for each text: |1 il

Apply I Cancel

Ready

Figure 1 The “General” tab of the Settings

e Working directory: the location where CorpusStudio should store its Corpus Research
Project files (those with a crpx extension).

e Command window. The CorpusSearch engine is run in a command shell. This option
allows you to watch what it is doing. (Obsolete.)

o Keep temporary files. Check this option to keep the temporary files CorpusStudio
produces. These files might be rather large, so it is not recommended to keep this option
on, unless you are debugging the program.

e Output Monitor. When checked, this option causes the program to switch to the Output
Monitor tab page, as soon as query execution (F10) has finished.

e C(Clear log. Clear the log page before starting a fresh execution of queries.

e Synchronize when opening. As soon as a new corpus research project (crpx file) is being
opened, the newer query files in the project will overwrite those in the specified query
directory, and the newer query files in the query directory will overwrite those in the
project.

e Synchronize when closing. Same as above, but then upon closing the program or closing
the current corpus research project.

e Drive change. Automatically convert the drive specified on the Files tab page of a corpus
resarch project. For example: G>U means that when a file or directory on the Files tab has
G:\data\temp.q, CorpusStudio will convert it into U:\data\temp.q. Use with care!

6 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

e Examples per item. This specifies the maximum number of examples per “item”
CorpusStudio should collect in the resulting HTML file. If you set this to “0”, then all
examples will be collected.

e Normalized size. Texts vary in sizes (in terms of number of sentences), and this number
allows you to specify a normalized size. The default value is 100, which is okay for
practical purposes. The average size of all texts in the syntactically annotated Penn-
Helsinki-York corpora is about 940.

e Period ordering. Periods are specified in the Period Editor. Each period has a starting
year (“From”) and a closing year (“Until”’). When CorpusStudio presents the results of a
series of queries to you, it can order the periods from which the data come in two ways.

o From first. This leads to the following order of subperiods:
= 01 (450-800)
= (012 (450-950)
= 02 (850-950)

o Until first. This leads to the following order of subperiods:
= 01 (450-800)
= 02 (850-950)
= 012 (450-950)

3.2 The “Project Editor”

Select the “Project Editor” tabpage in order to define the different kinds of projects
CorpusStudio can work with (see Figure 2). There are two important predefined project types,
and please do not (for the moment) pay attention to other types.

The current version of CorpusStudio pays attention to the file extensions and comment
marker specifications, but it does not take the “Command Line” into account.

~F Adjust Settings for CorpusStudio i =] |
Settings file: ID:\Data fileg*»*mi\CorpusStudioS ettings. xml
Generall Project Types Project Editor |
Froject type M ame: IPenn-psd
Input description: IPennJWeebank FSD
squem-sml Engine I Csearch2 > l
Executable location:
Houen-psds
C:ufooCS.jar |
query-htrl
—File extenzions —————————————— Comment marking
Holceties ped Comment start: I.-""
derilics I g Camment end: I".-"
Drefinition files I def

Command line:

cud.exe /k jawa.exe -classpath §exe csearch/Corpus3earch fouery §input -out foutput > ferror 2Zrsl ss Exit

Apply I Cancel

Ready

Figure 2 The project editor tab of the general settings

1) Penn-psd. This type takes Penn-Treebank PSD (.psd) files as input. It works with the
JAVA program cs.jar. Changes in the location and/or naming of the cs.jar file should be
made here. You are advised to keep your cs.jar file in the directory c:\foo (you can put it
there manually).

2) Xquery-psdx. This project takes .psdx files as input, processes them with the JAVA
program query.exe (made available by Saxon), and produces .psdx files as output. This

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 7

CorpusStudio

project makes use of the internal Xquery engine, so that the location of the executable file
is irrelevant.

3) Negra-tig. This project takes .tig files as input. Such files are called either Negra or Tiger-
xml. Examples of corpora availble in this format are the CGN (Corpus Gesproken
Nederlands), and the Negra corpus. This project makes use of the internal Xquery engine,
so that the location of the executable file is irrelevant.

4) Alpino-xml. This format is not (yet) supported.

The Project Editor also contains the file extensions and command marking symbols peculiar to
the project types. Here is an overview of the settings required for the two project types currently
available in CorpusStudio.

Penn-psd Xquery-psdx Negra-tig Alpion-xml

File extensions

Source files psd psdx tig xml

Query files .q Xq Xq Xq

Definition files .def Xq Xq Xq
Comment marking

Comment start /* € € G

Comment end */ :) :) :)

Table 1 Specifications of Project Types supported by CorpusStudio

4 Corpus research projects

Corpus research projects are XML files with the extension .crpx. Create a new project using
File/New, or open an existing one using File/Open. A corpus research project contains the
following elements:

1) General information about the project, such as its name and purpose

2) Information about the input and output File and Directory locations

3) All the Definitions used by and defined for this project

4) All the Queries used by and defined in this project

5) The Constructor Editor contains a specification of the query execution order

Please get into the habit of providing as much information as possible in the General tab of the
corpus research project, so that you (and others) will know in the future what the purpose of
this corpus project was, and how you envisioned to reach that purpose.

There are more tab pages available in CorpusStudio, but these do not hold the specifications of
a corpus research project—they serve to visualize the specifications and view the output of
query execution. The tabs are the following:
1) The Hierarchy and the Tree tabs visualize the query execution order
6) The Output Monitor show the progress of query execution
7) The Results tab give the results of executing a series of queries
(Those results are also saved in an HTML file)
8) The Viewer allows you to quickly scan through individual files

The different tabs of the CorpusStudio main window will be discussed in the following
subsections.

8 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

4.1 The “General” tab
=lalx|

File Edit View Tools Help Ui\Data Files\CorporalCorpusStudiolFocusAdyMonCesax-Kouery _YS. crpx
General |Files I Period Editorl Definitionsl Query Editorl EonstluctorEditorI Hielarchyl Tree I DutputMonitoll Output Filesl Hesultsl Viewerl

M ame of thiz Corpus Research Project: |Fc-cusAva onCesasquen V5 Date created: | dngdag 21 juni 2011j
Authar. [Erwin R Komen Date last edited: [22-6-2011 9:16:37
Goal: R quue'-'"'de” j Freferences for thiz project
Find out where focused constituents are located by looking at several things: Preceding contest ines: |3
[1] Focus Particles [marked FP)
[2] &dverbs that are part of a PP or MP that iz part of the main clause (|P-MAT] Following contest lines: |1

Wwe do thig in the non-cesased files, but the adverbs have been enriched with an AdvType feature ¥ Shaow syrtax of sach result

" Lock this project against synchronization

Comments:

Look at the following focus particles:

| v

{11 Monly", "ana®
(2] "hbute
[3) Mewven'
Also look at adverbs that wodify NFs or PPs:
{11 "just"
[2) M"about"™ --» doesn't really convey foocus, does it?
[3) "hack", e.g: (FPF [(ADV back) (F to] (NF the bhoat)) --> 1= this focus?
(4] "directly™ e.g: (PP (ADV directly) (P to) (NP the town)) ——> Thi=s is focus!
The encoding of these focus particles is as follows in ModE and MEE:
[a) (FP only) ——> wodifies the werb
(b (PP (FP onlyv) (P of) (WP ...)) ——> wodifies a whole PP
[c) (NP (FF only) ...) —--> modifie=s an NF (HEE)
(NP (NE*N Apolloniuzs) (FP ana)) —--»> modifies an NF (QOE)
(d) QP (FP but) [(Q little)) —-r modifies a gquantifier
[e] (NUMP (FP but) (NUM fiwve)) ——> modifies a numeral
(£) (ADWP (FP but) (LDV poorly)) ——> wodifies an AdvP
History:

07/dec/2010 ERK Created for Xgquery
18/ feb/2011 ERK Added queries to capture Contr and Emph adwverbs as encoded with AdvwType
21/jun/2011 ERK bdded cueries to distinguish PP[foc]-3-V from PP[foc]-V-3

L]

Figure 3 The general tab specifies the main features of a corpus research project

The “General” tab allows you to specify several important features of your Corpus Research
Project. There are a number of things that have to be supplied obligatory. Others are optional.
You are strongly advised to provide all information, even the optional items.

1) Name. The name for this corpus research project. It is advisable to use a name without
spaces, so that the filename, which coincides with the project’s name, is consecutive too.
When you change the name of a project, and save it (using Ctrl+S, or File/Save), then the
program will ask you whether you want to save the project under this new name.

2) Author. Specify all people responsible for this project.

3) Project type. Choose between “Xquery-psdx” and “Penn-psd”. See section 3.2.

4) Date created. Choose the date on which this project was created.

5) Date last edited. CorpusStudio will keep track of this date itself.

6) Project Preferences:

a) Preceding context lines. The number of lines in the Results tab that should precede
the line found by a query.

b) Following context lines. The number of lines in the Results tab that should follow the
line found by a query.

¢) Show syntax of each result. Whether you want to have a syntactic break-up of the
line found by a query. For the Penn-psd projects, this will give part a bracketed
labelling result. For the Xquery-psdx projects, this will give a one-level deep
rendering of constituents.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 9

CorpusStudio

d) Lock this project against synchronisation. Any corpus research project that is going
to be filed/archived for future reference, for instance a project that delivered results
you have published in a paper, should be “locked”. This locking overrides the
otherwise specified synchronisation of query and definition files, as specified in
Tools/Settings (see 3.1).

7) Goal. Concisely specify the goal of this whole project. If your project combines several
goals, then consider dividing it up into more projects, each with one goal.

8) Comments. You are free to add any additional important comments to the project as a
whole. For instance, specify the strategy you use in this project to reach the research
project’s goal. Another good practise is to include the History of a project here (see
Figure 3).

4.2 The “Files” tab
=T

File Edit View Tools Help Wi\Data Files\CorporalCaorpusStudiolFocusAdyMonCesax-Xauery _YS. crps

General Files |Peri0d Editorl Definitionsl Query Editorl EonstluctorEditorI Hielarchyl Tree I DutputMonitoll Output Filesl Hesultsl Viewerl

Output directory: ID D ata fileshCorparahCorpusStudioFP _I
Guemy directory: ID D ata files\ CorporatCorpusStudio'sig _I
Input directarn: ID %D ata fileghCorporatE nglishhsmlsAdapted _I
InpLtt file extension: Ipsdx— Marmally this iz " ped” for Ceearch, and *.psds” for Xgqueny

Select all files in this directory Select [nput Files... |

Selected input file(z]:

* . padx

Figure 4 The files tab specifies the location of files and directories

CorpusStudio needs to be aware of the location of input files and some other directories before

it can execute queries. The Files tab should therefore be filled in as quickly as possible when a

new project is started.

1) Output directory. Specify the directory where CorpusStudio should store the results of a
query execution task. The results consist of (a) an html file and (b) an xml file.

2) Query directory. Specify the directory where a backup of your queries will be placed.
The Corpus Research Project file (with crpx extension) contains all your queries, but they
are synchronized with those in the query directory you specify. If you use one query

10 25-11-2019 12:02

3)

4)

5)

Radboud University Nijmegen, Centre for Language Studies

directory for all your projects, then synchronization allows each project to benefit from

the improvements made in the query specified in a particular project.

Input directory. This is the directory where your corpus files are located. The corpus

files (psd for the Penn-psd projects, and psdx for the Xquery-psdx project type) are taken

from the directory specified here as well as the subdirectories of the input directory.

Input file extension. The extension for input files is defined for each project type in

Tools/Settings/ProjectEditor. Sometimes you may want to use a project handling input

files with a different extension. The setting here can then override the default input

extension. The extension should start with a period.

Selected input files. Two buttons allow you to specify whether all files in the input

directory should be taken into account for the query execution, or just those you specify.

a) Select all files in this directory. If this option is chosen, a wildcard will be used
which indicates that all files with the specified extension are to be taken into account
when queries are executed.

b) Select input files. This button allows you to select individual files. Use the control or
the shift buttons to select individual files or a range of files. Individual files can only
be selected from the directory specified in the Input Directory field. If you want to
specify files from subdirectories, then you are confined to use
Tools/Manual Input_Files (see 7.1).

4.3 The “Period Editor” tab
-la/x]

File Edit Wew Petiod Tools Help D:iData FilesiPublicationsiDissertationiDatalFocusAdvbonCesax-Xquery Vo, crpx

Generall Files Period Editor |Definiti0ns| Gluery Editorl EonstructorEditorI Hierarchyl Tree | DutputMonitorI Output Filesl Hesultsl Viewerl

Penod information: ID:\Data Filesh CarporaCorpusS tudio' QuenE nglishPeriods. xml |
Gnal |Describe the English periods Created: I vijdag 20 noverber 2009 LI
Cormments: History: - Last edited: |22.n’1‘|x'2D‘|2 81653

Period Defiritions | Period Divisions and Groups |

21/nov/2012 ERE &dded period divisions and groups
20/now /2012 ERE Tmprowved Mz24, M2353, M34 period definitions

02/aprs20la ERK Removed Che periods 5 ave period information
Zl/sep/2011 ERK Double check
0d/decs/2005 ERK Added period data for 0OE, and PCEEC ;I

Period: From: Until:
Abbrevistion: |034 J3s0 J1150

Marr| From| Until

01 |450 |800 Descriphion: IUId Englizh periods 3-4

012 | 450 | 950

Addfieisl.. | | Remove fie

B2 850 |35 coadrian.o34

023 (850 | 1050 Label for searching: Icolawgel

cochronE. o34

03 960 |1080

codicts.o34 bd atrix clauzes: Subordinate clauses:

0714 450 | 1150

coinzpoll. o34 |43 |4‘1 Clear clauze counts I

e (A R Description of selected file

colzigews. o34
04 |1050(1150

colweigei<a, o3
M1 11501250

comargal.o3d

Mx1 (1150 | 12580

cowulf. o34

M2 1250|1350

W23 1250 | 1420

M3 1350|1420

b2 11 2R0 1RO

Figure 5 The Period Editor specifies which input files belong to which period

The period editor tab shows all information contained in the period information file, and allows
the user to create, edit and delete this information. Period information is used by the query

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 11

CorpusStudio

execution algorithm, to figure out which results belong to which time period. The query
execution results are shown per time-period.

IMPORTANT

Do not use the period editor to define which input files should be treated.

Definition of which files function as input should be done by putting the necessary input files
in a designated (sub)directory, and setting the input in the General tab to this directory (see
section 4.2).

The information provided by the Period Editor counts for all projects, and even is the same for
different project types (see Tools/Settings/Project Editor). It provides a general description of
which files in the corpus are part of which period. It also contains information about the size
(in main clauses and subclauses) of each file in the corpora.

If you would like to work with only a part of the corpus as input, then put all the files for
that part of the corpus in a particular directory, and specify that directory as input in the
“Files” tab. See section 6.1 for a more detailed explanation and examples.

The Period Editor itself has two tab pages: one where the periods in use are defined, and one
where these periods can be grouped into larger period divisions. Each of these tab pages will
be treated in turn.

4.3.1 Definition of periods

The information contained on the “definition” part of the Period Editor tab is this:

1) Period Information. The name of the XML file containing the period information.
2) Goal. The goal of this file.

3) Comments. Any additional information, such as version information.

4) Created. The date when the period information file was first created.

5) Last Edited. The system keeps track of the date when the last changes were made.
6) Period. This contains a list of all defined periods, showing each one’s name and dates.
7) Abbreviation. The abbreviation used for the selected period.

8) From. The year when this period starts.

9) Until. The last year of this period

10) Description. Additional comments pertaining to this period.

The individual files for each period can be selected in the listbox that is positioned in the middle

of the Period Editor tab.

11) Add file(s). Use this button to add one or more files to the selected period. You can
alternatively use Period/Add Files.

12) Remove file. Remove the currently selected file from this period. (The file is not removed
from the hard drive, the only deletion is its reference from this period.) You can
alternatively use Period/Remove_File.

13) Label for searching. The identifier used to denotate sentences from this file (lower case).

14) Matrix clauses. The number of IP-MAT (or ‘S’ for other schemes) clauses in this file.

15) Subordinate clauses. The number of IP-SUB clauses in this file.

16) Description of selected file. You can add information about this file having to do with the
period it has been placed into.

12 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

IMPORTANT
Using the period editor for synchronic genre/dialect research

If you have a synchronic corpus, you can divide it up into genres and/or dialects. If you supply
each genre and/or dialect with a different “Period” abbreviation, and specify the files for each
of these subdivisions here in the Period Editor, the results will show a division into the
genres/dialects you have specified. The order of processing and display is alphabetical.

4.3.2 Period divisions

It can be useful to group detailed periods into larger divisions of periods, and this is where the
second tab page within the period editor enters the picture:

Period Definition: Penod Divizgions and Groups I

Divizgion of periods: New | Delete |
LargeFeriads Marne: IMediumS rnall
MediumLarge Description:IDE iz divided into two subperiods, ME into 4 periods, the others stay the same
MediumSmall Bt
Perii| Grou | Group thig period belongs to Mew group name: Available groups
01 (012 034 4| | m%i =]
012 |01-2 Add [GES
02 |o12 = Mt
Bemaove E12
023|034 E3
03 |03-4 B1
B2
014 |03-4 B3
0OE
ME
034 |03-4 etdodE
LrmodE
04 (034 01-2
03-4
M7 | k1 M2 (I
b1 |41 & M4 =

Figure 6 Definition of period groups

CorpusStudio automatically creates a division of periods which it calls “Standard”. This
division of periods assigns each period to a group with the same name as that period. So the
‘standard’ division in effect retains the groupings that have been defined in the Period
Definitions tab page.

Alternative divisions can be made by clicking the “New” button on the “Period Divisions
and Groups” tab page. The user is requested to provide a name for the period group (in the
example above the period group’s name is “MediumSmall”’). CorpusStudio will initially assign
each of the available periods to a grouping with the same name as the period. So period “024”
1s assigned to period group “024” and so on.

The user-defined re-division of periods into groups probably requires additional group-
names. Adding and removing of group names can be done like this:

1) Add group names. Enter the group name in the box “New group name”, and then press
the button “Add”. Check that the name appears in the listbox “Available groups”.

2) Remove group names. Select the group name in the listbox “Available groups”, and then
press the button “Remove”. Check that it has actually been removed. (The current version
of CorpusStudio may not yet check for situations where you have already been using a
group name that you are now removing, so you need to check this yourself.)

Once new group names have been defined by the process just described, they can be used for
re-grouping purposes. The process of re-grouping goes like this:

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 13

CorpusStudio

1) Select the period you want to assign to a new group. (In the example above the period
“024” is selected.)

2) Select the group you want this period to belong to from the combobox entitled “Group
this period belongs to”.

Period groups may be non-consecutive; the user is free to form them in the way the situation
demands. Be sure to use the save button once you have tediously defined period groups, so
that the period definition backup file contains the latest details.

4.3.3 Saving period information

The period information that is being used in a particular corpus research project usually resides
in two places: inside the corpus research project and on the “backup” location in the topmost
textbox labelled “Period information.”

When the user makes changes to the period definition or to the period groups, these
changes are automatically processed within the copy of the Corpus Research project currently
being worked on. It is only when the automatic synchronisation function has been switched on
that changes in the period definitions will also be processed in the “backup” copy of the period
information.

The user can at any time make sure changes within the period definitions are processed
in the backup location by pressing the large “Save period information” button on the right hand
side of the Period Editor tab page.

14 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

4.4 The “Definitions” tab
-loix

G

Defioton MName | OE +ME_xo-def Created: | dinsdag 14 december 2010 =l

1

File Edit Wiew Definition Tools Help U:\Data Files\CorporalCorpusStudiotFocusAadyionCesax-Xquery WS, crpx
enerall Files | Period Editor - Definitions |Quer_l,l Editorl ConstluctorEditorI Hierarchyl Tree I DutputMonitoll Olutput FiIesI Hesultsl Viewerl

DE + Last edited: |2‘I-B-2D1‘I 15:15:05

File ID:\D ata Files\CorporahCorpusS tudiot<g\OE+ME_xg-def =g |

Goal: IMain definitionz of variables and functions far different Englizh penods

Comments: (g3 seory:
16/feb /2010 - created?
Z/mov /2010 - updated
4/feb /2011 - updated

Text of the definitions:

o e e I~
Definitions of referential categories =
———)

declare variable §_IsPRefer az ®s:string := "Identity|Inferred|Crossipeech”;

declare variable §_IsinyRefer as xs:string := "Identity|Inferred|Crozsipeech|issuned”;

"New |NewVar | Inext™;
Thzaumed”

declare variable §_NoRefer as Xs:string :
declare variable §_World as xzistring @

declare variable §_IsFP as xs:string := "FP*";

declare variable § IsFociddv as xs:string := "ADV|ADV-+";

declare variable § FocOriadv as xs:string := "FP|FP-¥|ADV|ADW-%"";

declare variable §_Lockdv as xs:string := "e¥s[td]*n|nor*[td]*n|wes*[dc]*n|su*[dc]*n";

declare variable §_anyverb as xs:string :=
"VE® |BE® |HV® | AXT |MD® | DO | *+VE® | ¥4+BE® | #+HV® | #+A0(% | #+MD* | *+D0O% " ;2
declare wariahle §_finiteaud &s ®s:string :=
"BEIL |BEF* |EED# |UTF | ¥HVI | FHVE* | *HVD® | #AXT | FAXFPF | F4XD% | *MD | *DOT | *DOPF | ¥DODF | NEHEBEI | NEGHEEP*
|NE GH+BED * | NEGH&XT | NE 4+ AXP#* | NHEGH*AXD* |NEHFMD ™ 2 LI

Figure 7 The Defnitions tab contains one or more definition files to be used

The Definitions tab allows you to edit definition files. The types of definition files differ,
depending on the particular project type you are working with (e.g. Xquery-psdx or Penn-psd).
Once you have selected the Definitions tab, the menu options for Definitions become available.

Import. If you have (received) a definitions file, and it is not located in the query
directory (see section 4.2), then you can “import” it to your query directory using this
command.

New. Start a new definitions file from scratch. If you already have a definitions file, it will
remain loaded in your corpus research project.

(N.B: the query execution of CorpusStudio has not been tested for handling more than one
definitions file yet.)

Add. If you want to add a definitions file, and keep it in its original location (or if it is
already located in the query directory), then this command will make this definitions file
part of the current corpus research project.

Remove. Remove the reference to the currently selected definitions file from this corpus
research project. (If you have saved your corpus research project previously, a copy of this
definitions file will remain in the query directory specified in the “General” tab.)

Change Location. If you have a definitions file, but want to change its backup location
(the location used for synchronisation), then “Change Location” allows you to do that.
Up. Move the selected definitions file one position up in the list of definition files.

Down. Move the selected definitions file one position down in the list of definition files.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 15

CorpusStudio

The definition tab itself allows you to edit a definitions file. The following information is

available for a definitions file:

e Name. The name of your definitions file without extension, and without path.

Created. The date when this definitions file has been created.

Last edited. This date is automatically set by the system.

File. The full name and location of your definitions file.

Goal. Succinctly specify the goal of this particular definitions file (especially if you use

multiple definition files).

e Comments. Any additional comments (e.g. edit history) you would like to make about
your definitions file.

o Text of the definitions. The definitions themselves can be specified here. Make as much
use as possible of comments. This will allow you to trace back your intentions in the
future.

4.5 The “Query Editor” tab
=10l x|

File Edt View Query Tools Help U:iData Files\CorporalCorpusstudioiFocusfdyMonCesax-Kquery_V5.crpx
Generall Files | Petiod Editc-rl Definiions Query Editor |ConstructorEditor| Hierarchyl Tres | DutputMonitorI Output Filesl Hesult&l Viewerl
Quen:

++FP
mats +v+Factdy File: ID:\D ata filesh\CorporasCorpusStudio®=gimats 4 +FF.xg |

Mame ImatS+V+FF' Created: Imaandag 6 december 2010 LI

Last edited: |2D-8-201‘I 15:02:27

matS -+ dvContr Goal |Find the information arder in clauses with subject, finite verb and a focus particls in one of the PP2 or NPs

mats #+AdvEmph Comments: [Fing parrix IPs , having:

matS +4-+hdvT ype (1) a subject (but it may not he *, Inert or NewVar)
(2] a finite werh
tFPfoc- 5+
ma o Process these clauses using subcategorisation for:
{3) Comstituent type (3, O, P, L)
(4] Information type (New, Ref)

Test of the query:

<TEI>
{

—

for gsearch in //eTree[th:HasLabel (BLabel, § matrixIP)]

let §sbj := th:%omeChildWNo($search, §_ subject, §_nosubject)

let gwb = th:SomeChild($search, % finiteverh)

let $o0bj := th:allChildren(§search, 'PP¥|NP®')

let $fp := th:GetFP($obj, §_IsFP)

let $fpn := th:PPobjectlrNP(5fp)

where [exists($sb]) and

notith:I=Starred($sh]j)) and
notith:Corefi$sbj, 'Inert|New¥ar')) and
exists(sEpn) and

exists(svh)
1
return th:MyForestCatMsgifsearch, th:FinVerbloc($fp), thi:WewInfo(sfpn))

}
< /TEL>»

Figure 8 The Query Editor tab contains definitions of the queries belonging to this project

The Query tab allows you to edit query files. The types of query files differ, depending on the

particular project type you are working with (e.g. Xquery-psdx or Penn-psd). Once you have

selected the Queries tab, the menu options for Queries become available.

e Remove. Remove the reference to the currently selected query file from this corpus
research project. (If you have saved your corpus research project previously, a copy of this
query will remain in the query directory specified in the “General” tab.)

16 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

New. Start a new query file from scratch. Depending on the project type (Xquery-psdx or
Penn-psd) you will be asked to supply initial information for this query, such as the name
of the query.

Add. Select an already existing query file and make it part of this project. The backup
location of your query file (see synchronization) will remain as it is, unless you change it
with “Change Location”.

Copy. The “copy” function is a convenient way to make a new or extended query based
on an existing one. You will be asked to provide a new name for the copy of the query.
Change Location. If you have a query file, but want to change its backup location (the
location used for synchronisation), then “Change Location” allows you to do that.

Up. Move the selected query file one position up in the list of query files.

Down. Move the selected query file one position down in the list of query files.

The query tab itself allows you to edit a query file. The following information is available for
a query file:

Name. The name of your query file without extension, and without path.

Created. The date when this query file has been created.

Last edited. This date is automatically set by the system.

File. The full name and location of your query file.

Goal. Succinctly specify the goal of this particular query.

Comments. Any additional comments you would like to make about your query. This is a
good place to explain a bit more specifically what your query is supposed to be doing.
Text of the queries. The query itself should be specified here.

o Penn-psd projects. There is little room for comments here. Just keep your queries
as succinctly and to the point as possible. Be sure you know what you are doing
when using the logical OR and the NOT (or !) operators.

o Xquery-psdx projects. Make as much use as possible of comments within the
definition of your query. This will allow you (and others) to trace back your
intentions in the future. Make sure that your Xquery functions are specified in the
definitions file.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 17

CorpusStudio

4.6 The “Constructor Editor” tab

B Corpus Studio = ;lglﬂ

File Edit ‘iew Construckor Tools Help U:iData Files\CorporalCorpusStudiol FocusAdyvionCesax-xguery 4S5, crpx

Genelal' Filez I Period Editorl Definitionsl Query Editor - Constructor Editor | Hierarch_l,ll Tree | DutputMonitorI Output Files| Hesultsl Viewerl

Constructar line: Queny: !matS+\-"+ﬁdvEmph j Features for each Dbase result
QL Input | Buery
1 | Souce | matS+v+FP Input: ISource j [T Make a complement file I
2 | Source | mat5+y+Focddy IV Show the DUTPUT of this query in a Besultline I Store autput [and cmp] of this line Lreate result database |
3 | Source | matS+y+hdvCont Result tag: |5+V+AdVE|'ﬂDh I Do nat include examples Show result locations |
4 |Source | m Goal: Find the information order in clauses with subject, finite verb and an emphatic
5 | Source | matS+v+AdvType adverb in one of the PPs or NPs
6 | Source | matPPfoc-5+f
Comments:

Find matrix IPs, hawving:
(1) a subject (but it may not be ¥, Inert or NewVar)
[2) a finite werb
[3) & PP or NP having an adwverb of type "Emph™
Process these clauses using subcategorisation for:
(4] Position in relation to finite werb

Figure 9 The Constructor Editor tab specifies the query execution order

The constructor editor allows you to define the order in which the queries are executed, and
what the input is for each particular query. Both Penn-psd as well as Xquery-psdx project types
allow the output as well as the complement to serve as input for another query.

A number of menu items become available under Constructor, once you have found your

way to the Constructor Editor tab.

Add. Add a query to the end of the constructor editor lines.

Insert. Add a query immediately before the currently selected constructor editor line.
Remove. Remove the currently selected constructor editor line from the queue.

Up. Move the selected line in the constructor editor one up (if possible).

Down. Move the selected line in the constructor editor one down (if possible).

The constructor editor tab itself allows you to specify what actions need to be taken when the
current line in the constructor editor queue is executed.

18

Constructor line. Add a query to the end of the constructor editor lines.

Query. Add a query immediately before the currently selected constructor editor line.
Input. Select the correct input line. The particular input lines you can choose from
depends on the available outputs and complements defined in previous constructor lines.
Every constructor line allows you to choose “Source” as input, which means that the
query in this constructor line takes all the source files as its input. If you are in line #4 (as
in the example above), you will be able to choose between 1-out (the output of constructor
line #1), 1-cmp (the complement of constructor line #1), 2-out, 2-cmp, 3-out, and 3-cmp.
Make a complement file. Set this flag if you would like the current constructor line to
make the complement of its output available to the following constructor lines. Beware of
complement-usage. The complement for Xquery processing constitutes all sentences in
the input files that fail to meet the criteria set out in the query. The complement for
CorpusSearch processing is a little bit different. Please see the CorpusSearch
documentation for details.

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

Show the OUTPUT of this query in a result line. There can be intermediate queries, the
output of which you do not need to have shown in the overal results (see the “Results” tab
in 4.10). Set this flag if you do not want to show the output of this line in the results.
Store output (and cmp) of this line. This option is only valid for the CorpusSearch?2
engine. If this option is set for a particular line in the constructor editor, then the output
and the complement are combined into.psd files in the output directory you have
specified. The files have the format <projectname>-0c out.psd and <projectName>-

oc cmp.psd.. Use this option with care, because the results may be quite large, and
processing may slow down as a result.

Result tag. This is the tag (short description) that appears as rowheader in the results’
overview table (see the “Results” tab in 4.10).

Do not include examples. If the query in the current line could produce a /ot of results,
and it only functions as a baseline, then you could set this flag to indicate that examples
for this result line need not be taken up in the results HTML file that constitutes one of the
main outputs of CorpusStudio. Alternatively you can set the maximum amount of
examples (“examples per item”) to, for instance, 150 in Settings/General.

Goal. Specify the goal of this query within the whole framework of the contructor lines. If
the goal here coincides with the goal specified in the query editor, just double-click in this
textbox, and the goal specified in the query editor will be copied here.

Comments. Any comments or explanations needed for the operation of the current line in
the query execution constructor. You can copy the comments from the query editor by
double-clicking in this textbox.

There is one advanced features available for all query types.

Show result locations. An overview is produced of all the results for this particular
constructor line. The results are divided in periods, and files per period. Each result lists
its location in terms of forestld and eTree Id (although these values only make sense for
the Xquery-psdx projects). If a syntactic layout of this result has been made, it too is being
shown (in the “PSD” column).

N.B: The result locations contains the number of results per text in a table at the end.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 19

CorpusStudio

RE

File Edit Miew Tools Help U:\Data Files\CorporalCorpusStudiolEHL-dema_Y2.crpx

Generall Files I Period Editorl Definitionsl Query Editorl ConstluctolEditorI Hierarch_l,ll Tree I DutputMonitorI Output Files Results |\-"iewer|

Result locations

Project: EHL-demo V2

Date: donderdag 30 jum 2011 0:00

Source: DiData files\Corpora'English\psd\Pilot

Clutput: DiData files\Corpora\CorpusStudie\EHL-Detmo
Cuery Line: 5-V-0O

Period O3

coapolle.o3.psd

Text ID forestld eTree Id PSD
ApT:1.35 4 1
ApTi1.67 6

ApT3.1.27 26

ApT5 569 &3

ApT6 176 75

ApT7.17.108 107
ApTS8. 10158 157
ApTi10.14.177 176
ApTi11.1.182 181
ApTi11.6.187 186
ApTi12.22.216 215
APT2:23: 217 216
ApTi12.26.220 218
ApT13.9.231 230
ApT:16.6.305 304
ApT17.11.348 347

Lo e e e e e e e e e e e e e e

Ready showing kthe locations of the selected QC line -

Figure 10 The result locations of one line in the constructor editor

There are a few other advanced features available, but these one only apply to Xquery-psdx
projects. They allow for the creation of an xml database based on the output of the current
query. See the Cesax Manual for a more detailed explanation.

The xml format of the database is the same CrpOview scheme as the one used for the xml file

containing all output of a Corpus research project. There are a few “standard” fields supplied

for the database. You can add your own fields in the following way: (1) let your query produce

a semi-colon separated string with the values for your fields, (2) make this string available as

“message” variable using the Xquery function tb:MyForestMsg or tb:MyForestCatMsg, (3)

specify the names for these features in the “features for each Dbase result” textbox.

e Features for each Dbase result. Specify the feature names and their relative number in
the message string (see above) in the format: <FeatureName>@<OrderNumber>, where
consecutive features are separated by semicolons. If you have, for instance, three values
made available in the “message” variable, and you want the 3™ and the 1% to be put in a
database, then specify: MyName@3;MyName@]1.

e (Create result database. Push this button to start the database creation process.
CorpusStudio will tell you where it has placed the resulting XML database, and how it has
named it. Be sure to change its name (and location) to your desires, so as to prevent the
database from being overwritten accidentily, when you access this project again later.

20 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

4.7 The “Hierarchy” tab

sl
Fle Edt Tools Help U:\DakaFilesiCorporailCHL1S\CorpusStudiollehl-Subjects V3.crpx
Genersl| Fies | Quer Constructor Hietarchy | Tise | Quer Editor | Dutput Moritar |
=]
Source
v
1 Query 11 Query
OMmat+VESIHP OMmat+Vi+Spre
1 Output 11 Cutput
OMbnaV+5_SHRJot M+ 5_Sprosnat
1 Query 12 Query
OMmatVi-SHNP OMmatVi-Spro
Zout 3 Cruery 12 out 13 Query
{mp) OhmatSHE-VE {mp) ObmatSpro-VE

4 Query 3 out 14 Query 1% out

COhmatTa (tmp) OMmatTa (tmp)
4 out 4 emp 6 Query 14 out! 14 emp 16 Query
() (mp) Oldmattot-3P-Subj mp) () CMmatot-XP-Subj

5 Query & out & cop 15 Query 16 out 16 emp
COMmatVE-i-SHP (trnp) (trap) OMmatVE-i-Spro (trap) (tmp)
5 out 5 cmp T Query 8 Query 15 out 15 emp 17 Query 18 Query
{fp) (fap) OMmaiSubRef ||| OMmatSubRef {fp) (up) OMmatSubR.ef OMmatSubRef
emapty) 9 Query 10 Query 7 Output|7 Cutput| |8 Output’® Output] || ||| [E7P S 19 Query 20 Query 17 Output/17 Output] {18 Output(18 Outpu]
OMmatSubRef OMmatSubRef B s e Dm‘:ﬁpm" fm Sm OMmatSubRef OMmatSubRef DM:"‘;;‘U‘?“" “‘{';ﬂ“" fm Sm
9 Output/? Cutput{||10 Output| 10 Output] 19 Output|1% Output] ||20 Cutput20 Output|
M | O8enats ||| obbzecss | ongmave Obmarti | Ot ||| OMmate | Obzats
SWPiiow | SHPiamp SHPiom | SMPilamp Sproviout | Sproijomp Sproi/ont. | Sproddamp

o

Figure 11 The Hierarchy tab shows the query execution order

When you access the hierarchy tab, CorpusStudio draws a representation of the hierarchy of
your queries as defined in the constructor editor. Places where a result is produced, but it is not
used in the Results tab are labelled as “empty”. The example above shows two such empty
labelled outputs. But these are outputs from an intermediate query (named “tmp” by
CorpusStudio), so all is in order.

If you do not like the way the hierarchy is presented here, consider using the 77ee tab instead.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx

21

CorpusStudio

4.8 The “Tree” tab

_loix

File Edit Tools Help U:\Data Files\CaorporalICHL 9 CorpusstudiotIchl-Subject1s W3, crpa

Eenerall Files I Cuery Eonstructorl Hierarchy TTEE Huem Editu:nrl DutputMonitan

B 4% Souce
E|---":,i_’."| 1 Obmat+V+5MP - Find IP-tat +%F + subject.
- ® 1 0Mmaty+5_ SHPAout
EI"E’! 2 OMmatvf-SHP - Extract the V-[=]-5 word orders.
- @ 2 Jout
E';:w 4 OMmatTa - Getrd of Ta/MEG
e @ 4 fout [unused)
B-® 4 Jomp
EI"E! 5 OMmabvf--SMP - Look within V-[=]-5 for -5 and V-2-5.
- ® 5 fout
: EI'E_’! 9 OMmatSubRef - Determine referential versus non-referential for WS,
e i@ 3 DM matyF-SNPiAout
: L@ 9 0kmatf--SHPicmp
E| ® 5 .r'u:mp
El-&% 10 OMmatSubRef - Determine referential versus non-referantial for WS,
i@ 10 OMmatvi-SHPIfaut
fee@ 10 OMmaty-SNPidcmp
E'"IE* 3 OMmatSHPAF - Eutract the S-[x] word orders.
Sl @ 3 dout
E';:w E OtdratM ot+<P-Subj - Look within 5-[2]% for 54 and =-5-4.
E-® & fout
' EI"E_’! 7 OMmatSubRef - Determine referential versuz non-referential for Y.
o @ 7 OMmatSMPAE oot
- @® 7 OkmatSHPiYE cmp
EI ® B a‘u:mp
= ";r! 8 OmMmatSubRef - Determine referential versus non-referential for 254
b @ B OMmat<P-SMPiout
e @ B OMmat<P-SMPE cmp
I'_—'I---"'E.i 17 OMmat+i+Spro - Find IP-Mat +¥F + subject,
E-@ 11 OMmaty+5_Sprodfout
EI"E’! 12 Dkmatyi-5pro - Extract the V-(=]-5 word orders.
COE-® 12 Jout
=% 14 OMmatTa - Get rid of Ta/MEG [P-nitislly
e @ 14 dout [unused)
B-® 14 fomp
- ""1 15 OMmatyf--Spro - Look within W-[=]-5 for %-5 and W-x-5.
EI 'h 413 DMmatSpm AfF - Entract the S-x] word orders.
E| @ 13 Jout
E"'E_’w 16 OkmatMot+P-Subj - Look, withing S-[x]4 for 54 and =54
E-® 16 fout
' E|':,i_’1 17 OkmatSubRef - Determine referential versus non-referential for 5.
- @ 17 OkmatS proi-idout
- @ 17 OMmatsproiviicmp
EI ® 16 a‘u:mp
= ";r! 18 OMmatSubRef - Determine referential versus non-referential for 5%,
e @ 18 OMmat<P-5Proidvf/out
fe @ 18 OMmat<P-5 Proivi/cmp

Figure 12 The Tree tab visualized the query execution order in another way

The Tree tab shows a treeview of the query execution ordering specified in the Constructor
Editor. Queries are shown as mailboxes, and are coloured blue. Output and complements are
shown as bullets and are normally coloured black. When there is something exceptional about
the output, it is coloured red. In the situation above there are two outputs that are reddened,
because their output is not being used as input to other queries, nor is their output shown in the
results overview.

22 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

Double-clicking a query will bring you to the corresponding query in the Query Editor. You
can update a tree by pressing F8 (or View/Update Tree). Tree expansion and collapsing of trees
can be done using Shift+F8 (or View/Expand, View/Collapse).

4.9 The “Output Monitor” tab
X

File Edit View Tools Help Ui\Data Files\CorporalCorpusStudiol EHL-dema_Y2.crpx
Genelall Filez I Period Editorl Definitionsl Query Editorl EonstluctorEditorI Hielarchyl Tree Output Moritor | Output Filesl Hesultsl Viewerl

Currently executing query line number: |1

Marne: |S+D+\I

Quens: ID:\D ata files\Corpora'CarpusStudio\ EHL-Demoterp_subS+0+4.q

Input: I D:AD ata fileshCorporatE nglizhped'Pilathcmpolych. m3. psd

Output: Iteme o]
Log

Starting execution of gqueries at: 30-6-Z011 13:46:47
Periocd: 03
Deriaod: ML
Deriod: M2

Processing petiod 3/8 file 1/2 [crmpolych.m3] 25% HEROOEEEER

Figure 13 The Output Monitor tab keeps track of the query execution

The Output Monitor tab allows you to monitor the progress of query execution (which starts
after you have pressed F10—see 5.4). Execution of queries is done in the following order:
1. Periods (as defined in the Period Editor): increasing date and name (see also “period
ordering” in section 3.1).
2. Filenames: increasing name of files for each period.
3. Sentence: each file is processed sentence by sentence.
4. Query. Queries are processed in the order specified in the Constructor Editor.

The basic unit of processing in CorpusStudio, therefore, is the sentence, as it is being processed
for all queries. The advantage of this execution order is that errors in queries are detected very
early in the process.

As files and queries are being processed, CorpusStudio displays the following:
Query line number. The number of the line specified in the Constructor Editor.
Name. The result-line-description specified for this constructor line.

Query. The complete backup location of this query.
Input. The name of the current input file.
Output. The (temporary) name of the output being produced.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 23

CorpusStudio

Log. The start and end time of the query execution is displayed here, and as the queries

are being processed, the period names are logged.

The statusbar at the bottom of CorpusStudio shows how far each particular file has been
processed by the queries defined in the Constructor Editor (so if you have 4 lines in the

constructor editor, you will see 25%, 50%, 75% and 100% here).

4.10 The “Results” tab

h Corpus Studio |

File Edit Wiew Tools Help U:\Data Files\CorporalCorpusstudiolEHL-demo_ W2, crpx

Generall Filez I Period Editorl Definitionsl Query Editorl EonstructorEditorI Hierarc:h_l,ll Tree I DutputMonitorI Output Files Results |\.-"iewer|

Owerview of CorpusStudio results

Project: EHL-demo V2

Date: donderdag 30 jum 2011 13:58

Who: RINU459154

Cutput: D\ Data files\CorporalCorpus Studic\EHL-Derne

Description 03 M1 M3 M4 E1 Bl B2 B3 File

SO+ 170 172 1236 169 137 132 85 178 subS+0+Y
3-0-V 8% 31 3 1 0 0 0 0 sub3-0-V
3-V-0 54 1191202 147 122 126 75 174 sub3-V-O
Eemander 13 18 1% 14 10 0 2 4 subRemamder
IP-MAT 1065891 7703 788 405 544 606 832 (CorpusStudio)
IP-3UB 786 894 5750 696 604 653 460 860 (CorpusStudio)

QC=1

Descaiption=S+0+V File=subS+0+V Period=03 Back

Descaiption=5+0+V File=subS+0+V Pertod=M1 Back
Descaiption=8+0+V File=subS+0+V Period=M3 Back
Descaiption=5+0+V File=subS+0+V Pertod=0M4 Baclk

I|)esc1‘i]1tiun= 5+0+V File=subS+0+V Period=E1 Back
4

=10l %]

-

Results loaded From: D:\Data files\Corporal CorpusStudiolEHL-DematEHL-demo_Y2-resuls.html -

After query execution has completed, the results are provided in two different ways:

The Atml file displayed in the Results tab contains the following information:
Project. Name of the corpus research project.
Date. Day and time when the execution of this project was completed.

Figure 14 The Results tab shows results in tabular form and contains the examples

1. XML. An xml file is produced (in the CrpOview format as specified in 9.1). This file
contains all the results of all query lines. But it does nof contain the example sentences

themselves, nor does it contain their context.

2. HTML. An html file is shown in the Results tab and is saved on the location specified.
(The filename consists of the corpus research project’s filename, where —results.html

have been added).

Who. Author of the project in terms of the user name on the computer used to run this

project.

Output. Directory where the output 4tm/ and xm/ files have been placed.

This general information is being followed by a table that summarizes the results numerically.
Each row in the table coincides with a line in the Constructor Editor (unless that line’s “Show

24

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

the output” flag was unchecked). Each column in the table represents one of the periods as
specified in the Period Editor.

The last two rows in the table show the amount of main clauses and sub clauses in the
input files as a whole for each period. The last column in the table shows filenames (for older
versions of CorpusStudio), or repeats the name of the line as defined in the Constructor editor.

Jump to examples by clicking the number in a cell

By clicking on the number in a cell you are directed to a position within the Atm/ file where the

example sentences for the period and constructor line number specified by the cell are located.

The start of a section of examples contains the following elements (see Figure 15):

e Description. Name of the results line as available in the summary table above and as
specified in the Constructor editor.

e Object File. (Same as above.)

e Period. The period from which these results are taken.

e Back. Press this button to go back to the overview table. Alternatively you can go back to
the start of the Atml file by pressing Ctrl+Home.

Each example is numbered, and consists of several elements:

1) File. Short name of the file in square brackets. The example has [bain-1878].

2) Preceding context. The number of “preceding context” lines specified in the General tab.
Each line is preceded by its location identifier.

3) Result. The line that meets all conditions in the queries is shown in blue.

4) Following context. The number of “following context” lines specifed in the General tab.

5) Syntax. If you have flagged “Show syntax” in the General tab, then this line shows the
syntax of the sentence containing the result. The precise way by which the syntax is being
shown depends on the project type. The example below illustrates the syntax for an
Xquery-psdx project.

6) Message. If you have specified a message line—which can only be done for the Xquery-
psdx and the Negra-tig projects—then the message line forms the end of the information
for each example.

=

Eile Edit Wew Tools Help U:\Data FilesiCorporalCorpusstudiol CleftBasic_¥1.crpx

Genelall Files | Period Editoll Definitionsl Query Editorl Constructor Editorl Hierarch_l.JI Tree I Output Monitor | Output Files Results IViewerl
Description=finCLF_Object File=finCLF Period=B3 Eack [

Example 1

[bain-1878] [383.347] This is not easy when two studies are ewbodied in the sawe cowmposition,

as language and meaning; [353.3458] in that case the separation can be effected only by keeping

one of the two in the background throughout each lesson.[353.349] The least gquestionable effect

of classical study although one equally arising from modern languages is the exercise of

cowposing in our own languadge through translation. il
[383.350] Ztill, it is but a divided attention that we can give to the exercise.

[383.351] We are under the strain of divining the meaning of the original,

[p-mar [apwe S5till] [, ,] [¥e-38J it] [BEF i3] [¥r-0B1l but a divided atctention] [cp-cLr
that we can give to the exercise] [. .]1]

agvoc; Chject;but a divided attention:FullNP:New -
4| 3

Results loaded from; D:\Data filest Corporal CorpusStudiol Cleftsywig\ CleftBasic 1 -results, html -

Figure 15 One example in the results file

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 25

CorpusStudio

4.11 The “Viewer” tab
-lo/x

File Edit Wiew Tools Help U:\Data Files\CorporayCorpusStudiol EHL-demo W2, crpx
Generall Filez | Period Editorl Definitionsl Guery Editorl ConstluctorEditorI Hierarchyl Tree I DutputMonitoll Output FiIesI Results Wiewer |

-

Filename

000y oooz] 12,103] CHAP. 3T gooos) oons] 12,176 (12,107 Then lesus, size dayes before the Passouer, came to
I Bethame, where Lararis was, which had bene dead, whom hee raised from the dead. nz17s nz.179 There
abott-21-p1 «| they made him a supper, 21010 and MMartha serued: nzir1 but Lazarus was one of them y=t= sate at the
2:&;}10213?1 j table with him. 12,17.127 p2,17.13) Then tooke Mary a pound of cintment, of Spikenard, very costly, na,in14 and
alhatton-e3-h anointed the feet of Tesus, pz,u.15) & wiped his feet with her hare: pz,17.18) and the house was filled with the

ambaszz-el-p2

atanEa odour of the cintment. (12,1717 (12,1713 Then saith one of ns disciples, Tudas Iscanot, Simons sonne, which

anhattoree3-pi should betray him, Why was not this omtment sold for three hundred pence, and gmen to the poore? pz17.19
2:22E§°?r‘1'133"32 1217200 This he said, not that he cared for the poore: but because hee was a thiefe, and had the bag, and
aplumpt-e-h bare what was put therein. 2,521 12,17.22) Then zaid Tesus, Let her alone, 12,1727 against the day of my
aplumpt-e1-p1 burying hath she kept this. 2,724 12,1725 For the poore alwayes yee have with yow: n2,17.26) but me ye haue
apoole-e]-p2

SRk not alwayes. 12,1727 pa,15.28 Much people of the Iewes therefore knew that he was there: n2,17.20] and they
a'mi”'eg'P; came, not for Tesus salce onely, but that they might see Lazars also, whom he had raised from the dead.
2?;'}::1 _ﬁ 12,1730 (12,1031 But the chiefe Priests consulted, y=t= they might put Lazatus also to death, Because that by
ascheel-pl reazon of him many of the Iewes went away and beleeued on Iesus. 12,1732 nz,10.32 On the nest day, much
:zﬁgi::-;e%z-h people that were cotne to the feast, when they heard that [esus was comming to Hierusalem, Tooke
aungier-e3-pl branches of Palme trees, n2,1734) and went foorth to meet him, p2,1535 and cned, Hosanna, (12,1736 blessed 1s
aungier-3-p2 the king of Tsrael that co~meth in the Name of the Lord. pa.iram nz,i038 And Tesus, when he had found a

auzten-180x
-5 yong asse, sate thereon, as it is written, Feare not, daughter of Sion, n2,1039 behold, thy Eing commeth,

sitting on an asses colt. [12,1040] (12,1741 These things voderstood not his disciples at the first; (12,1742 but when

p2

authold-e2-h Tesus was glonfied, then reme~bred they that these things were written of han, and that they had done these
2::22:;'::3?2 things wnto him. (12,17.43] 12,1744] The people therefore that was with him when he called Lazaris out of hus
g graue, and raised himn from the dead, bare record. (12,1045 n2,1746 For this cause the people also met him, for
E:gzg'zg'pé that they heard that hee had done this miracle. 2,747 n2,1048 The Pharisees therefore saide among
baire1 g?gp themselues, Perceiue ve how yvee prevaile nothing? 12,1040 Behold, the world is gone after him. 0s0] 12 20051
Ear§|‘3|}'-11?gg? 11220757 And there were certaine Greeles among them, that came vp to worship at the feast: 12,207.53] 12 20154
b:[d;"i% h The same came therefore to Philip which was of Bethsaida of Galilee, 220755 and desired him, saying, Sir,
Eeﬂnfg-h1 we would see Iesus. 12 207 56] 12 20757 Philip commeth nz 207 581 and telleth Andrew: n2 200591 and againe
bZhEZZBZEE Andrew and Philip told Tesus. nagorso) nzaoney And Iesus answered them, saying, The houre is come, that
bengon-1908 the Sonne of man should be glorfied. nz207.62) nz2 20063 Verely, verely, I say wnto you, Except a corne of

Vi v v ¥ g
EET;:ID:\;EZ‘D- r] | wheat fall mto the ground, and die, it abideth alone: 2 20768 but if it die, it bringeth forth much frut. (12,2075

nzzor66) He that loueth hus Ife, shall lose it: nz220r67) and hee that hateth his ife m this world, shall keepe it vato =

Figure 16 The Viewer tab allows viewing files available in the input directory

When you access the Viewer tab, a list is being made of all the input files that are available
under the “Input directory” path currently specified in the Files tab. Select a file to have its
contents displayed in the browser on this page. You can find words or sentences in a file by
using Ctrl+F.

5 Walkthrough #1: make a research project from scratch

5.1 Introduction

This section takes you through a typical CorpusStudio task, from the creation of a new corpus
research project until the evaluation of the results of that project. Our task here, as an example,
will be to compare the number of sub clauses having an SVO word order versus those that have
an SOV word order as the English language changes in time.

5.2 Create a new project

The first thing we have to do is create a new corpus research project, which will contain the
definition of our research task, all its queries, the way by which they are ordered etc. After you
have started CorpusStudio—if you have not already done so—select File/New (or press
Ctrl+N). You are prompted to provide two essential pieces of information:

26 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

e Corpus Research Project name. Give a succinct and, preferably, consecutive name for
your corpus research project. Consider using underscores instead of spaces. Do not
provide the extension crpx—CorpusStudio will supply that where it is needed.

e Query type. Select one of the query types that are available. The query type specifications
are visible in Tools/Settings. They should not be altered, unless you are really sure of
what you are doing.

We will call our corpus research project: subVQorder, since that succinctly captures what we
are attempting to do. We will be making use of the Penn-Helsinki-York parsed corpora of
different stages of English, and we will use the CorpusSearchll engine to do so. The projecttype
will therefore have to be Penn-psd.

After confirming our choices, a new project is created, and some default directory
locations are provided in the Files tab. The defaults are based on the last project we have used.
Take the following steps:

1. Directories. Alter the directory locations to your likings (see section 4.2 for an
explanation of the different locations).

2. Extension. Make sure the file extension is set to .psd (including the period).

3. Select input files. Press “Select all files in this directory”. The “Selected input files”
textbox should now show “*.psd”.

4. Save. It is good practice to fix the changes we’ve made on crucial moments by saving
the altered research project file. Press Ctrl+S or select File/Save.

a. CorpusStudio will suggest to save our file as subVOorder.crpx in the default
directory for corpus research projects as we have specified in
Tools/Settings/General (see 3.1). Confirm this choice.

b. Now go to the General tab, and continue in the next section.

5.2.1 Specify general information

Do go to the General tab, and fill in any information you can think of that is relevant for this
corpus research project. We can specify the following information for our project:
1. Author. Fill in your own name here (or keep the name that has been supplied
automatically by CorpusStudio).
2. Goal. Succinctly describe the overall goal of this corpus research project. A
suggestion:
a. Compare SVO versus SOV word order in sub clauses.
3. Comments. This is the place where we can be a little bit more informative. Here’s a
suggestion:

We test for word order SOV versus SVO in sub clauses.
These are the steps
(1) Baseline: all sub clauses (IP-SUB*) having a subject, an object
and a finite verb
(2) SVO order: those of (1) with order ...S...V...O
(3) SOV order: complement of (2) with order ...S...0...V
(4) remaining: complement of (3) should have remaining situations.

Note: review the remainder in (4) to see if we've missed something.
History:

11/10/2010 ERK Created
01/07/2011 ERK Minor revisions

4. Date created. CorpusStudio will have supplied the current date there. If you want to
specify a different creation date, this is the place to do so.
5. Preferences for this project

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 27

CorpusStudio

a. Preceding context lines. Let us ask for 2 lines of the preceding context to be
given, so that we have an idea where example sentences come from.

b. Following context lines. I suggest taking 1 following context line.

c. Show syntax of each result. Let us check this flag, so that we get a better idea
of the syntax of the results that are found.

d. Lock this project. We do not need to lock this project (see 4.1).

We have now supplied enough general information. This will help us in future to see what this
particular research project was all about. We have also supplied valuable information that
defines the results we will be going to see.

5.2.2 Get period definitions

Our new project is going to work with several diachronic English corpora. We need to supply
a period definition file in the Period editor that tells the program which text belongs to which
period (the period definitions do not tell the program which files it needs to process—that
information is taken from the “Input directory” specification in the Files tab; see 4.2).

If you do not have a period definitions file yet, visit the CorpusStudio homepage pointed to on
the Radboud University site, and download the file “EnglishPeriods.xml”.

Once you have downloaded the correct period file, incorporate it into your project by choosing
Period/Import_period information.

5.2.3 Import a “definitions” file

It is good practice to have a “definitions” file where we define what we, for instance, mean with
“subclause”, “main clause”, “subject NP” etc. You do not have to reinvent the wheel, so feel
free to visit the CorpusStudio homepage pointed to on the Radboud University site, and
download the definition file OE+MEU.def that is intended for work with the CorpusSearchll

engine. (Creating your own period definition file is explained in 7.3.)

Once you have downloaded this file, you need to incorporate it into your project. Do this by
choosing Definition/Import.

This command will copy the definitions file to the query backup directory, so that any
changes you make are processed automatically (provided you have the synchronisation
flags set in the General tab of Tools/Settings).

We are now ready laying the “foundation” of the corpus research project. We have defined all
general information, have defined the directories where input should be taken from, where
output should go to etc. We have our definitions ready. The next step is to define the actual
queries.

5.2.4 Create your own queries

Our project will need three queries:
1. subS+O+V. Get all sub clauses that at least contain a subject, an object and a finite
verb.
2. subS-0-V. Get those sub clauses that contain S-O-V in the indicated order.
3. subS-V-0. Get sub clauses containing a subject, a finite verb and an object in the
order S-V-O.

Create each query using the following procedure:
1. Create. Use Query/New, and supply the information needed for a new query:
a. Name. The short name as defined above.

28 25-11-2019 12:02

http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/
http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/

S

Radboud University Nijmegen, Centre for Language Studies

Node. The highest node we should be considering. Set this to IP-SUB*.
Add to ignore. Retain this to ** (see the CorpusSearch website).
Definitions. Our own definitions file OE+MEU should be defined here.
Remove nodes. Uncheck this flag. Checking this flag can have large

repercussions on the usability of the output you get. See the explanation.
f. Print indices. Check this flag (do read the explanation).
2. Edit. Provide the Goal, Comments and the actual Text of the queries as shown here:

Get sub clauses
containing a subject,

object and verb

Subject, object and
verb may be in any
order

node: IP-SUB*

add _to ignore: **
remove nodes: f
print indices: t
define: OE+MEU.def

query:

(subIP iDoms subject)
AND

(subIP iDoms objectonly)
AND

(subIP iDoms finiteverb)

Get sub clauses containing the

order subject-object-verb

The word order is:

(1) Subject

(2) Object

(3) finite Verb
There may be constituents
intervening!
node: IP-SUB¥*
add_to ignore: **
remove nodes: f
print_Indices: t
define: OE+MEU.def

query:

(subIP iDoms subject)
AND

(subIP iDoms objectonly)
AND

(subIP iDoms finiteverb)
AND

(subject Precedes objectonly)
AND

(objectonly Precedes

finiteverb)

Get sub clauses containing
the order subject-verb-object

The word order is:
(1) Subject
(2) finite Verb
(3) Object
There may be constituents
intervening!
node: IP-SUB*
add _to ignore: **
remove nodes: f
print_Indices: t
define: OE+MEU.def

query:

(subIP iDoms subject)
AND

(subIP iDoms objectonly)
AND

(subIP iDoms finiteverb)
AND

(subject Precedes finiteverb)
AND

(finiteverb Precedes

objectonly)

3. Save. Make sure to save each addition to the corpus research project using Ctrl+S.

The queries above make use of the definitions in OE+MEU.def. So the term “subIP” stands for
IP-SUB*, as defined in this definitions file. The term “subject”, likewise, is not a literal, but is

defined by the following two lines in the definitions file:
subjectoe: NP-NOM|NP-NOM-# | NP-NOM-RSP
subject: $subjectoe|NP-SBJ*

The first line defines the subject for Old English (where subjects are marked as nominative
NPs), and the second line combines this OE definition with the definition for subject (NP-SBJ)
used in more recent corpora. See the CorpusSearch website for the usage of definitions.

We have all necessary queries, but now they need to be processed in the right order. That is
going to be the topic of the next section.

5.2.5 Putting the queries in order

Once you have supplied all the necessary queries, CorpusStudio needs to know in what order
the queries are to be processed. So go to the Constructor editor tab. Here’s where we will make
4 (four) construction lines.
1. Get all sub clauses with an S, a V and an O.
a. Select Constructor/Add. This will produce one constructor line with default
settings. We will edit these settings for our purposes.
b. Make sure the query subS+O+V is selected. This is the general query that
selects sentences having a subject, object and finiteverb as direct children of a

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 29

http://corpussearch.sourceforge.net/CS-manual/Tips.html#using_ast
http://corpussearch.sourceforge.net/CS-manual/CommandFile.html#remove_nodes
http://corpussearch.sourceforge.net/CS-manual/CommandFile.html#print_indices
http://corpussearch.sourceforge.net/CS-manual/Tips.html

CorpusStudio

g.
h.

sub clause. (These sentences include those with a transitive verb and existential
clauses with a nominal complement.)

Set the input to Source. We want all input files to be taken into consideration.
Uncheck the Complement tag. We are only going to make use of the output of
this query, not its complement.

Check the Show Output flag. We want to have this line on the summary table
in the results.

Check the Do not include examples flag. We do not need to have examples of
the subclauses that contain S,0,V in any kind of order.

Double click in the Goal textbox, in order to copy the goal from the query.
Double click in the Comments textbox to copy the comments from the query.

2. Get sub clauses with word order S-O-V.

a.

b.

g.
h.

Select Constructor/Add. This will add a second constructor line with default
settings. We will proceed by editing these settings.

Make sure the query subS-O-V is selected. This query selects sentences
having a subject, object and finite verb as direct children of a sub clause, and it
specifies that the subject precedes the object and the object, in turn, precedes
the finite verb.

Set the input to 1/out. We use the output of the previous constructor line
(which uses query matS+0+V), so that we only look at those sentences that
have a sub clause with a subject, an object and a finite verb.

Check (!) the Complement tag. The output of this line consists of S-O-V
clauses, but we can use the complement as input to the next line, since it will
contain sub clauses with an S, a V and an O, but not in the S-O-V order.
Check the Show Output flag. We want to have this line on the summary table
in the results.

Uncheck (!) the Do not include examples flag. We do want to have examples
of the subclauses that contain word order S-O-V.

Double click in the Goal textbox, in order to copy the goal from the query.
Double click in the Comments textbox to copy the comments from the query.

3. Get sub clauses with word order S-V-O.

a.

b.

g.
h.

Select Constructor/Add. This will add a third constructor line with default
settings.

Make sure the query subS-V-O is selected. This query selects sentences
having a subject, object and finite verb as direct children of a sub clause, and it
specifies that the subject precedes the finite verb, which, in turn, preceds the
object.

Set the input to 2/cmp. We use the complement of the previous constructor line
(which uses query matS-0-V), so that we only look at those sentences that
have a sub clause with a subject, an object and a finite verb but not with word
order S-O-V.

Check (1) the Complement tag. The output of this line consists of S-V-O
clauses, but we can use the complement as input to the last line.

Check the Show Output flag. We want to have this line on the summary table
in the results.

Uncheck (!) the Do not include examples flag. We do want to have examples
of the subclauses that contain word order S-V-O.

Double click in the Goal textbox, in order to copy the goal from the query.
Double click in the Comments textbox to copy the comments from the query.

4. Get sub clauses with other word orders.

30

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

a. Select Constructor/Add. This will add a fourth constructor line with default
settings.

b. Make sure the query subS+O+V is selected. This query selects sentences
having a subject, object and finite verb as direct children of a sub clause in any
order.

c. Set the input to 3/cmp. We use the complement of the previous constructor line
(which uses query matS-V-0), so that we only look at those sentences that
have a sub clause with a subject, an object and a finite verb but not with word
order S-O-V nor with word order S-V-O.

d. Uncheck (!) the Complement tag. This is the last query, and we only need to
look at the output of this query.

e. Check the Show Output flag. We want to have this line on the summary table
in the results.

f. Uncheck (!) the Do not include examples flag. We do want to have examples
of the subclauses that contain word orders different thatn S-O-V and S-V-O in
sub clauses.

g. Define the Goal as:

1. Get sub clauses containing a subject, object and verb, but not in SVO
or SOV order.

h. Formulate a Comment like this:

1. The SOV and SVO word orders have already been filtered away in
steps #2 and #3.

All processing steps have now been formulated in the correct order. Make sure you save the
results by pressing Ctrl+S (or selecting File/Save). Let us now spend a little time on double-
checking whether the query ordering will proceed in the correct order.

5.3 Verify your project

Select the Hierarchy tab in order to verify the ordering of the queries. If all is well, you will see
a picture like this:

Source
|
ki
1 Cuery
sub SHO+V
1 Cut
ath S+ 0+t
1 Query
sub3-0-V
2 Cut 2 Crmp .
o 8- 0- Wit b 5 0- Wianp =l A Source
3 Query EI---":i_"’ﬁ 1 zubS+0+Y - Get zub clauzes containing a subject. object and verb
bSO - @ 1 subS+0+/out
20 20 EI---"'E.i 2 zubS-0- - Get zub clauzes containing the arder subject-object-verb
Feiatdll Wl o @ 2 subS-0V/out
= B ® 2 subS-0W/iemp
4 Query E---";f;.i 3 3ubSA-0 - Get sub clauzes containing the order subject-verb-object
sub S+ - ® 3subSY-0/out
4 Onit B @ 3 subSA-0/emp
pubRamainder/ot | E‘"'I'Ej 4 zubS+0+Y - Get sub clauzes containing & subject, object and verb, but not in S%0 ar S50Y arder

L@ 4 subRemainder/out

Figure 17 Verifying the queries in the subVQorder project

The hierarchy shows that the 1st query line takes “Source” as input, and that its output serves
as input to the second query line. The complement of the second line feeds into the third query
line, and the complement of the third line feeds into the fourth line. All is well.

Selection of the Tree tab and pressing Shift+F8 leads to the treeview shown in the figure above.
This too shows that the correct queries are going to be executed in the correct order.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 31

CorpusStudio

5.4 Execute your project

We are now ready to execute the queries in the correct order. Do this by pressing F12, or
choosing Tools/Execute.

1. CorpusStudio switches automatically to the Output Monitor tab, and takes several
minutes to process the information.

2. You can watch the progress, take a break, or do some other work.

a. You are not advised to switch to other tab pages of this corpus research
project. This could lead to unexpected results.

b. You are not advised to open another instance of CorpusStudio. The
synchronisation settings would lead to unexpected results, and might result in
loss of information.

c. If you want to interrupt the process, press F11. As soon as it is possible, the
program will stop execution of the queries. No results will be available.

3. Once the query execution has been finished for all files in the input directory specified
in the General tab of this corpus research project, a resulting htm! file will be created
and shown. CorpusStudio will take you to the Results tab. Your table should look
something like the one I have provided in Figure 18.

W& Corpus Studio o [=]E3]
Eile Edit Wiew Tools Help U:iData Files\CorporalCorpusStudiolsubhOorder. crpx
Generall Files: | Period Edllorl Deflnlllonsl Query Edltorl EonstruclorEd\loll H\erarchyl Tree | UutputMonltolI Output Files Results IV\ewerl
e
Owerview of CorpusStudio results :I

Project: subWVOorder

Date: woensdag 6 juli 2011 15:17

Whe: ERINU459154

Cutput: DiData fles\Corporal CorpusStudiolEHL-Demo

Description 01 012 02 023 03 0Ol4 024 034 04 M1 Mxl M2 M23M24 M3 M34 M4 Mx4 E1 E2 E3 Bl B! B3 File
subSHO+HV 23 4269 1228 6076 2617 1172 73% 2B 3802 943 1048 226 507 4863 1512 2926 17 667% 7722 6521 3630 3335 2512 subS+O+V
subS-O-V 12 2 2471 655 3326 1602 463 424 9 870 371 236 1 0 &4 14 14 0 26 18 5 it 0 0 subS-O-V

subS-V-0 3 972 375 1967 607 500 209 § 2383 437 £49 207 487 4630 1443 2776 17 £172 7107 5942 3281 2908 2327 subS-V-O

2,
Remainder 5 0 421 132 460 239 115 61 8 260 44 55 12 14 105 34 109 0 386 507 516 297 393 164 subRemainder

i

IP-MAT 83 13 2031510786 50201 21428 5986 7448 365 15064 4428 7347 612 1909 26318 6187 19830 88 28194 34614 24544 15424 20326 17201 (CorpusStudie)
IP-SUB 112 12 23857 7486 3778 16668 7196 5501 181 18309 4460 5122 1217 2590 23678 7201 12815 120 32887 35501 33012 17980 17321 13158 (CorpusStudio)
1| | »

Results loaded Fram: D:\Data files\Corpora|CorpusStudio| EHL-DemalsubvOorder-results. html -

Figure 18 Resulting table for the subOVorder research project

5.5 Look through the results

When CorpusStudio has directed you to the Results tab, you should be able to see the summary
table of the results. Beware, however, there may be more summary tables. There is a main
summary table (as in Figure 18), but after this main table there is one summary table for each
of the “Period Groups” that you have defined in the Period Tab (see).

We can now “leaf through the results” in order to see what has happened, and whether the
results are as we would have expected.

1. General trend. The general trend can be gleaned from the results table to some
extent. What we see is that the number of SOV word orders found within one period
declines with respect to the number of SVO word orders in that same period.

a. Periods O24 and O4 seem to form the turning point from mainly SOV to
mainly SVO.

b. Excel. You could copy the table with the numbers to Excel (or your favourit
spreadsheet program) and calculate the actual percentages of SVO with respect
to SOV or with respect to the baseline.

2. Look at SVO. We start by looking at some examples of SVO in older English (since
that is the time we would least expect these word orders).

32 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

a. Click on the subS-V-0 result line for period O2.

b. Check some of the sentences here—do they really have SVO word order?
Which elements intervene between S-V and between V-O? Are these sentences
restricted to a particular verbal category?

c. Looking at one example already helps. The example is from
[cobede,BedeHead:1.6.14.6]. The example shows a real subject-finite verb-

direct_object word order in a sub clause:
Pat Seuerus se casere onfeng micelne dal Breotene.

d. Checking the syntax of the example helps too. The subject and the object are
correctly identified.

i. The subject is (8 NP-NOM seuerus se casere).

ii. The verb is (16 RP+VBI onfeng).

iii. The direct object is (18 NP-ACC micelne del Breotene).

iv. The whole syntax of this sentence:

—

/*
7 IP-SUB: 7 IP-SUB, 8 NP-NOM, 18 NP-ACC, 16 RP+VBDI
*/

(0O (1 CODE &1t;T06850000500,1.6.14>)
(3 CP-THT (4 C +D+at)
(6 IP-SUB (7 IP-SUB (8 NP-NOM (9 NR”N Seuerus)
(11 NP-NOM-PRN (12 D”N se) (14 N”N casere)))
(16 RP+VBDI onfeng)
(18 NP-ACC (19 Q”A micelne)
(21 N"A d+al)
(23 NP-GEN (24 NR Breotene))))
(26 ,)
(28 CONJP (29 CONJ &)
(31 IP-SUB-CON (32 NP-NOM *con*)
(34 NP-ACC (35 D"A +tone))
37 PP (38 P mid)
40 NP-DAT (41 N”D dice)))
43 RP+VBD tosceadde)
45 PP (46 P fram)
48 NP-DAT (49 ADJ"D o+drum) (51 ADJ”D unatemedum) (53 N”D +teodum))))))
55 . .))
(57 ID cobede,BedeHead:1.6.14.6)

3. Look at SOV. Return to the main results table by clicking Ctrl+Home. Now look at
SOV examples in later English (since this word order gradually was lost).

a. Click on the subS-O-V result line for period B1, which suggests that there still
is an SOV word order in a sub clause as late as the B1 period (defined in the
Period editor as running from 1700 until 1769).

b. Check the sentence there. Does it really have SOV word order? Which
elements intervene between S-O and between O-V?

c. The one instance with SOV word order is from [brightland-1711,5.36], and
the syntax of the sub clause shows that the subject is represented by a trace,
which is marked as *T*-1 in this corpus.

1. We probably do not want to include “empty” or “trace” subjects in our
results.
1. We should therefore add an additional requirement to the subject in our
query files.
4. Look at the remainder. Return again to the main results table by clicking
Ctrl+Home. Now look at some of the “remainder” word orders in later English.

a. Click on the Remainder result line for period B3.

b. Check some of the 164 instances found over there.

c. The first instance there is from [BAIN-1878,374.226], containing;:

But why [1p may not we learn them] exactly as they occur in the
mother tongue?

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 33

CorpusStudio

d. The word order here is VSO:
1. Vin (the auxiliary may)
ii. S (the pronoun we)
iii. O (the direct object pronoun them).
e. We should have excluded sub clauses that are part of a question clause, for
instance by adding the following condition to our queries:
1. (!CP-QUE* iDoms subIP)

There is much more to creating and verifying corpus research projects, but as far as
CorpusStudio is concerned, this chapter has given you enough information to deal with projects
using the CorpusSearchll engine. Do make use of the query language information on the
internet (you can use Help/Query languages/CorpusSearch to go to the website).

The CorpusSearch engine is not being developed further, as the website says, so you could
consider switching to Xquery. You can use the Cesax program to convert psd programs to the
psdx format. Such texts can then be processed using the Xquery language (see 7.3.4).

6 Walkthrough #2: creating a project with the wizard

Instead of creating a project from scratch, CorpusStudio allows the creation of a research project
with the help of a wizard. Provided one has identified the structure that needs to be found in the
related “Cesax” program, the CorpusStudio wizard allows the relatively simple creation of a
complete project without the need to know any Xquery. And even if programming expertise is
available, the wizard makes it possible to quickly create a structure that can then be adapted to
one’s particular purposes.

6.1 Cesax: prepare a corpus search

The first step in the process, then, is opening a syntactically parsed .psdx file in Cesax, and
selecting a sentence that contains a configuration that is at the primary interest of the researcher.
If one would be looking for main clauses in Chechen, for instance, that contain the equivalent
to the English “when-clause”, the clause in Figure 14 might be a good point to start.

34 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

#% CESAX: Editor for syntactically annotated corpora 10l =l
File Edit Wiew Section Translation Reference Corpus Must Syntax Tools Help

.Generall Editor I Syntax Tree |Translati0n| Heportl Ermors I CorpusR esults | Refwialk Dependency

4 Umaev1-2014.16

x|
— Relations
: M| Mzl Type | Bz| Fe| Value | Mode
S_HE 1] Search |- |- |IP-MAT |phrase

O [dwaaioolu] [dyezaliera] | Delete selected condition Reset LCancel | Ezport I

Ready

|[1 E] Maana dwaagelsicha . dwaajoolu dyezaliera marzuo, &= | = |

eTree [IP-MAT] @from=1 @to=49 - Section 11 .

Figure 19 Preparing a Corpus Research for CorpusStudio

The preparation of a corpus research involves selecting all relevant constituents, and this is
done in the “Tree” tab page in the following way:

e Select the hierarchically highest node (the “1r-vat” in Figure 14) and press space. The
“Query building relations” window appears, and this first selected node receives the
variable name “search”.

e Select all relevant sub-nodes, and each time press srace. The program will come up
with a textbox, which is where you provide a relevant name for the selected node. See
Figure 15:

o The constituent “np-ses” has received the name “sbj”. The “Query building
relations” window shows that it is the “chi1d” of “searcn”, which always is the
first node.

o The constituent “ver” has received the name “vrin”. The “Query building
relations” window shows that it too is a “chi1a” of “searcn”.

o The constituent “rr” is about to receive a name. The name-entering textbox has
appeared, and the user is giving it the name “whenciause”.

[3

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 35

CorpusStudio

‘5' CESAX: Editor for syntactically annotated corpora =] B3]
File Edit Wiew Section Translation Reference Corpus Must Synkax Tools Help

.Genarall E ditar I Syntax Tree Trans\at\onl Heportl Erars I CorpuszResults | Refwal

212014 Umaey1-2014. 16

7]

whenClause]

IP-MAT | phrase
1 |sbj [Match |search | child MP-SBJ | phrase
2 | wFin [Match | search | child WBP phraze
2 Order |1 preceding-zibling phraze

@ [dwaamolu] [dyezallara] [marzun] O

Delete selected condition Fezet Cancel | Expart I

Feady

[16] Maana dwaagelsicha . dwaajoolu dvezaliera marzuo. @ | = |

Press [Ok] when you have revised the short name (1-8 letters) for variable [cns4] - Section 1/1 .:

Figure 20 Providing variable names for selected constituents

What about constituent order? Notice that the node v#in has received an ordering relation: node
“2” (which is the vrin) should receive node “1” (the sbj). Cesax initially assumes that the
identified constituents must appear in the order in which they are available in the clause. If this
is undesirable, then the individual ordering conditions can be deleted by “Delete selected
condition”. And if anything goes wrong in the query preparation, “Reset” can be used to start
the process afresh.

The next step for the purpose of identifying the correct constituents when looking for
Chechen “when-clauses” would be to select the constituent “vep+p-1”, since this heads the
when-clause; otherwise a query might just be looking for main clauses with a finite verb, a
subject and any kind of rp.

Once all nodes that are needed in identifying the clauses one is looking for have been
added to the “Query building” window, “Export” needs to be pressed. This issues the command
to save the ingredients of the query-to-be to a special file on the computer. It is this special file
that the program CorpusStudio will use in its Query Creation Wizard to automatically prepare
the Xquery code that looks for the structure we are interested in.

6.2 CorpusStudio: creating a new project

Once the Query Creation Wizard in Cesax has been run, it is time to switch to CorpusStudio.
The program should be opened, and then the Corpus Research Project Creation Wizard can be
run. The procedure starts by choosing File/New, which brings up the following dialog box:

36 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

ES Provide essential project information.. e x|

Corpuz Research Project name:

|EhechenWhen_version1|

Froject type:
IXquer_l,l-psd:-c

Mame ¢ | Engine

Alpina-sml | *query

Meara-tig Houery

Penn-psd | Czearch?

Cancel |
Figure 21 Choosing a project type and naming the project

For the purpose of this walkthrough the project type is “Xquery-psdx” (since we are working
with .psdx files), and the name of the project is “ChechenWhen_versionl”. Once the project
type is selected and the name entered, “OK” can be pressed. This immediately brings up the
first step in the “Project initialisation wizard™:

_‘ Project initialization wizard : = |EI|1|
Language | Periods.-"genresl Definitionsl
YWhatis the language being investigated in your corpus research project?
Ethn | Name | Type Miimegen parzed corpus of modemn Chechen
Chechen | npcmc
nid Dutch can
nid Dutch hist
eng English hist
eng English histCS
eng English zla
Do not use the project initialization | <4 Frevious | Mext »» | Cancel I ok
Ready

Figure 22 Project initialisation: language

This first step requires the selection of one of the pre-configured languages. For our project, the
first language “Chechen” is chosen. (It is possible to work with other languages, but not with
the project initialisation wizard as it is right now; should you want to add a language to the
wizard, please contact the CorpusStudio help desk.)

The initialisation consists of three steps, and we have had the first one. The next step comes up
once “Next” has been pressed.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 37

CorpusStudio

W project initialization wizard =10 x|
‘Language Periodsfaerres | Definitions |
Which period definition file would you like to use?
Subdivision of NECHC
ChechenPeriods. sml
Do nat use the project initialization | << Previous | Mext >> | Cancel | ok I
Ready i

Figure 23 Project initialisation: Period or Genre

The second step in the wizard requires one to specify one of the “period definition files”. Most
of the projects that are currently available only have one such file. This xm/ file contains the
names of all the text files belonging to a particular corpus, and for each file it holds information
regarding its genre and/or time-period. The Chechen texts are divided in two ‘periods’: C3 and
C3t. The former covers modern Chechen texts that have been written straight away, while the
latter covers Chechen texts that have been translated from other languages (e.g. Russian or

English).

The last step in the project initialisation can be selected by pressing on “Next”.

38

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

h Project initialization wizard A = |Ellﬂ

-Languagel Periods/genres Definitions

¥ 1 would ke ta specify a main definition file

r— Main definition file [with wariable declarations)

standard Chechen

Che_5tandard-def.xq

™ Add one ar more definition files [with functions)

— Additionally definition files [with function declarations]

Mame + Chechen auxiliaries

Che_Aux-def.xg

Do not use the project initialization | << Previous | Hewt » | Cancel I Ok I

Ready

Figure 24 Project initialisation: Definitions

The last step of the wizard allows one to select one or more definition files. Such files contain
definitions of variables (e.g. the labels that are used as ‘subject’, or all the different finite-verb
labels) as well as user-written functions (we will come to that later). For the purpose of this
walkthrough we select the main definition file (it is common practice to at least include such a
file, since it may come in handy at some point), and we will not select any additional definition
files.

7 Common tasks

7.1 Restricting input to part of a corpus

The corpus files (psd for the Penn-psd projects, psdx for the Xquery-psdx project type, and tig
for the Negra-tig project type) are taken from the “Input directory” specified on the Files tab
page as well as the subdirectories of that directory. If you would like to restrict the input to only
part of a corpus, you will have to play a bit with the file structure, and, possibly, duplicate some
texts in the corpora.

It is good practice to provide the texts from the corpora in a hierarchical file structure, like the
one given here for the English corpora:

English/psd/AllPeriods/OE - Old English texts (YCOE).
English/psd/AllPeriods/ME - Middle English texts (PPCME2).
English/psd/AllPeriods/eModE - Early Modern English texts (PPCEME).
English/psd/AllPeriods/LmodE - Late Modern English texts (PPCMBE).
English/psd/Pilot/All - Provide one text from each of the periods

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 39

CorpusStudio

Using the file structure above, you can restrict the input to texts from one period only (e.g. OE
or ME), you can look at a small pilot corpus (the Pilot/All subdirectory), or you can take the
whole corpus as input (by specifying the English/psd/AllPeriods as input directory).

7.2 Wordcounts o
. . File Edit Yiew Tools Help

YOU. may WlSh to Verlfy the l’lul’l’lber Of Words, Generall Files | Period Ed\torl Definitionsl Guery Editorl EonstructorEditorI Hie 4 ’I

lines or texts in a particular corpus or in a corpus H

part you have defined yourself. This can be done =YY ordcount
through TOOlS/WOTdCOUl’lt, but Only for deX Eesults for DiData files\Corpora\Chechensmlp arCrg
corpora. Specify the directory where the corpus

. . Drate: woensdag 18 januan 2012
(or part of the corpus) resides, and, the counting

starts. Measure Value
Texts 210

Note: the number of ‘lines’ is the number of | Lines £668

sentences that are distinguished in the text (in xm/ = Words AI05

Lines pertest 31,75
terms: the <forest> elements). To find out what e per
Words per text 427 45

has been taken as ‘line’ in a particular text, load words pertine 1346
that text in Cesax and do View/Text. B

Note: the number of ‘main clauses’ is reported in
the Results of a query, and this number is not equal to the number of lines (in general). See also
section 8.3.5.

8 Advanced tasks

There are some advanced tasks you can use CorpusStudio for that need some more explanation.
Do skip this section if you do not need the tasks specified here!

8.1 Specifying input files manually

When you want to select a particular input file with a name or extension not captured by the
automatic tools, you can use Tools/Manual input files. This command turns off the read-only
feature of the “Selected input file(s)” textbox on the Files tab. You are now able to edit this
textbox manually.

If all you want to do is specify a diverging extension of the input files for this project, make use
of the “Input file extension” textbox instead!
8.2 Using files with different exentions

If you have input files, for instance, for processing with CorpusSearch, but with an extension
upsd instead of psd, you can specify this alternative extension on the Files tab in the textbox
labeled “Input file extension”. Make sure you start the extension with a period.

8.3 Creating period definitions

A well-defined period file is essential to the processing of corpus research results. Do read
section 4.3 on the Period-editor tab page. This section explains a few specific tasks in more
detail. If you already have (downloaded) a period information file, then you can easily skip this
section. But if you have been preparing your own corpus of files (e.g. through Cesax), then this
is where you need to spend some time!

8.3.1 Make a new period information file

If you want to start a completely new Period Information file, proceed as follows.

40 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

Start a new project, and give it a name of your liking.
Select the Period editor tab.
Choose Period/Create period_information.
Choose an appropriate location and name for the new period information file. (You do
not need to supply an extension—CorpusStudio will give it the xm/ extension.)
5. Fill in the informational fields for this new period information file
a. Goal. Succinctly specify the scope and goal of this file.
b. Comments. Add any additional information for this period file.
c. Created. Keep the system-chosen date, or change it to your liking.
Add periods (see add period above, steps 1-3).
Add texts to each period (see add texts above, steps 1-5).
8. Repeat steps 4-6 of the instructions under “add period” to make sure the new period
information file gets properly saved.

P

e

If you have made a new period information file for an existing corpus, consider making it
available to the larger community of CorpusStudio users. Please consult the CorpusStudio
homepage referred to from the Radboud University website.

8.3.2 Add a period

If you only want to add a period definition to a period definition that already exists, all you
need to do is this:
Go to the Period editor
Select Period/Add
Supply the name of the new period.
Make sure this project is not “locked” against synchronisation (see the General tab
page of this corpus project in 4.1).
5. Make sure the general synchronisation flags are checked on the General tab in
Tools/Settings.
6. Save the project by using Ctrl+S or File/Save.
a. Saving a project when synchronisation is set will automatically transfer
changes to the period definition into the Period Information file specified on
the Period editor tab.

el S

Suppose you have a new corpus of a different language that you would like to process with
CorpusStudio. Before you can use the texts from this corpus, you either need to add them to
existing periods or make a completely new Period Information file.

8.3.3 Add texts to a period

If you want to add texts to an existing period information file, proceed as follows:

1. Go to the Period editor

2. Select the period you would like to add files to in the listbox labelled as “Period”.

3. Select Period/Add files or press the “Add file(s)...” button.

4. Locate and select the new corpus files you would like to add, and then press Open.

a. This will add the texts to the currently selected period

5. You can supply additional information for each file here, if you want to. You are not
advised to fill in the “Matrix clauses” and “Subordinate clauses” textboxes yourself
here. CorpusStudio will calculate the number of main and subordinate clauses of the
files you have added as soon as first execution including them takes place.

6. Repeat steps 4, 5 and 6 of the instructions above for adding a period defiinition, so
that the synchronisation transfers the additions to the periods to the Period
Information file you have specified.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 41

http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/

CorpusStudio

8.3.4 Add period groups

It can be useful to group detailed periods into larger divisions of periods. CorpusStudio
automatically creates (well, it should create) a division of periods which it calls “Standard”.
This division of periods assigns each period to a group with the same name as that period. So
the ‘standard’ division in effect retains the groupings that have been defined in the Period
Definitions tab page.

(Note: if CorpusStudio has not been as cooperative as it should, and has neglected to make the
“Standard” division, do send me a note and tell me how his happened. And don’t forget to make
the “Standard” division of periods yourself, if you find yourself in this situation.)

You may want to add period divisions for a number of reasons, some of which are:
1. Genre differentiation.
2. Combining several small periods into larger period-divisions.
3. Language learning cohort differentiation.
4. Translated versus non-translated texts.

Whatever the reasons are, you can make your own new “Division” by using the following steps:

1. Create a division. Use the “New” button on the “Period Divisions and Groups” tab
page). Give this division a logical (short) name as well as a description.

2. Create groups. The new division (say “Genre”) consists of groups (say “Proze” and
“Poetry”’) and you need to add these period groups. Fill in the “New group name”
textbox and then press “Add”. Double check to see if this new group name has been
added to the list of group names

3. Link periods to groups. The next step is to link each of the small detailed periods
you have to the correct period-group (see 4.3.2 for details).

Once you have defined your period divisions, make sure you save the results (see 4.3.3). Make
a backup of your period-division xm! file just in case. And if you want to, consider making it
available to the CorpusStudio homepage.

8.3.5 Clause counting

The results of executing shows the number of main clauses and subordinate clauses (see 4.10
as well as the two walkthroughs). These numbers are not calculated ‘on the fly’ each time. They
are calculated only once (when the softward sees that they have not been done). And then they
are stored in the period definition file.

Note: when the make-up of psdx files changes, make sure to ‘reset’ the counts of the associated
entries in the period definitions.

Period Definitions ~ Period Divisions and Groups

Period: From: Lirttil:
Name Fom Untl o Abbrevition: [C | 150][20m0 |
c1 1900 1919 Description: |M0dem Chechen 3 franslated)
cz 1920 1545
Name ~ Add file(s)... Remove file Change to other period. ..
ca 1950 2010 0340059 Label for searching: |p3-4—DD555' |
2400557 Matrix clauses: Subordinate clauses: Words:
P |21 | |21 | | | Clear clause counts
p34-00533

Figure 25 Clause count resetting

Resetting the main clause and subordinate clause counts can be done by opening the Period
Editor, selecting the relevant period, selecting the file in that period, and then pressing the
“Clear clause counts” button (see Figure 25).

42 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

Note that the period definition file then needs to be saved again.

8.4 Using Xquery projects

There are currently three types of projects using the Xquery engine:

1.

Xquery-psdx. This is the xml equivalent of the available treebank psd files, for
example, for Old English (YCOE), Middle English (PPCME2), early Modern English
(PPCEME) and late Modern English (PPCMBE). Sentences are marked as <forest>,
syntactic units as <eTree> and words (endnodes) as <eLeaf>. The structure of these
nodes is strictly hierarchical, and resembles the syntactic structure. The xml schema
used for the psdx format is available online (see 9.2). A batch converter that translates
psd files into the psdx format, called TreebankToXml, is available on the Radboud
University site.

Negra-tig. This format has been used to encode parts of the Dutch CGN (Corpus
Gesproken Nederlands) and the German Negra corpora. Sentences are coded as <s>,
non-terminal nodes as <nt> and terminal nodes as <t>. Each <s> node simply takes a
list of <t> and of <nt> nodes, and the structure of the syntactic phrases is dealt with by
providing each <nt> node with a number of <edge> children, which are pointers to
either <t> or <nt> nodes.

Alpino-xml. Parts of the CGN have been transformed in this format, and a
considerable amount of Dutch texts have been added through the Lassy project.
Sentences, syntactic phrase and terminal nodes are all encoded through <node> nodes.
Their hierarchy resembles the syntactic hierarchy of the sentence.

This current section discusses the way in which the three types of corpus research projects differ
from Penn-psd projects (which are treated in section 5).

8.4.1

Creating an Xquery-psdx project

Creation of an Xquery-psdx project largely runs along the lines of the creation of a Penn-psd
project, as described in section 5.2. The differences are as follows:

1.

2.

3.

4.

8.4.2

When creating a new research project (using Ctrl+N), select the type of the project as
Xquery-psdx, Negra-tig or Alpino-xml.

Put all your definitions into one definitions file. Consider downloading the definitions
file that comes with a set of Xquery function aimed at working with the Xquery-psdx
format. (See the CorpusStudio homepage.)

You can make use of several built-in Xquery functions, as defined in appendix 9.3.
All of these functions use the prefix ru:

The queries for Xquery-psdx projects should adhere to the format described in 7.4.2.

Query format

Queries for the Xquery projects need to adhere to a particular format. An example query is
given here.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 43

http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/
http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/

CorpusStudio

<TEI>
{

for $search in //eTree[ru:matches (€Label, $ matrixIP)]

let $sbj := tb:SomeChildNo ($search, $ subject, $ nosubject)
let $vb := tb:SomeChild($search, $ finiteverb)
where (exists($sbj) and

exists ($vb)
)
return ru:back ($search)

}
</TEI>

The most important elements in the query are:
1. Tag: the correct opening and closing tag should be used
2. Brackets: curly brackets must be inside the opening and closing tags
3. Code: the Xquery code within the brackets must at least consist of a for, where,
return sequence, and the return sequence must have a call to ru:pack ().

First of all, the tag. The query should be enclosed between an appropriate opening and closing
tag. This tag differs per project type:

Xquery-psdx <TEI> .. </TEI>
Negra-tig <subcorpus> .. </subcorpus>
Alpino-xml <alpino_ds> .. </alpino ds>

The next essential is the presence of curly brackts: the body of the query must be between
curly brackets {...}. The code of the query within these curly brackets consists of a for ... 1et
.. where ... return expresion, but the 1et part is optional.

e for. Use the for statement to zoom in on the node you would like to focus your attention
on. The name of the tag used for this node depends on the project type.

o Xquery-Psdx. Each sentence is inside a <forest> element. The constituents within
the sentence are all <eTree> (embedded tree) elements. The terminal nodes that
contain the lexical content are the <erear> (embedded leaf) elements. In the
Xquery-psdx example above, the $search variable in the for statement selects all
<eTree> nodes that have an re-vat label.

o Negra-tig. The non-terminal nodes are inside a <nt> element, and the terminal
nodes inside a <t> element. A Negra-tig for statement would, for instance, select
<nt> nodes as follows: for $search in //nt[ru:matches (@cat, $ matrixIP)].

o Alpino-xml. Each sentence is in a <alpino ds> element (usually each file contains
just one sentence). All the constituents up to the lowest terminal node level are in
<node> elements.

e let. Use lef statements to pick on particular nodes—children of the main node, ancestors
of them, siblings, etc.

e where. Use the where statement to test your conditions. You can use boolean operators
and and or. Negation is accomplished by the built-in function not ().

e return. The return part can be a call to the built-in function ru:back (). The function
ru:back () can take up to three arguments, and the different possibilities are listed below,
where ndArg is the node you would like to be particularly emphasized in the result
examples, the string variable strCat is used for subcategorisation (see 7.4.4), and the string
strMsg is the message you would like to have displayed with this particular result. (The
message string can also be used for database creation; see 7.5.)

o ru:back(ndArg).

o ru:back(ndArg, strMsg).

o ru:back(ndArg, strMsg, strCat).

44 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

<TODO: explain how to make your own return function>.

8.4.3 Accessing constituents through Xquery

The Xquery language allows us to access the syntactic constituents in a number of different
ways. Remember that syntactic constituents form a hierarchical tree. The xm/ representation of
the syntactic tree in the Xquery-Psdx projects is a hierarchical tree of <eTree> elements. The
whole syntactic tree of one sentence consists of these <etree> elements, and has a <forest>
element at the top. The actual ‘words’ (the lexemes or endnodes in the syntactic tree) are
encoded as <ereaf> elements. Here is a piece of (slightly simplified) xm/ code that captures the
sentence “Linguistics is fun.”

<forest forestId=’'1l’ Location=’'s01l’>
<eTree Id=’'1l’ Label=’"IP-MAT’'>
<eTree Id=’2’ Label='NP-SBJ’>
<eTree Id=’3’Label=’'NS’>
<eLeaf Type=’'Vern’ Text=’Linguistics’ />
</eTree>
</eTree>
<eTree Id=’4’'Label='BEP’'>
<eLeaf Type='Vern’ Text=’1is’ />
</eTree>
<eTree Id=’5'Label=’"ADJP’>
<eTree Id=’6'Label="ADJ’>
<eLeaf Type='Vern’ Text=’fun’ />
</eTree>
</eTree>
<eTree Id=’7'Label=".">
<eLeaf Type='Punct’ Text='.’ />
</eTree>
</eTree>
</forest>

<TODO: explain how to reach the different constituents using the Xpath axes>

8.4.4 Subcategorisation

The output of queries is normally provided for each line defined in the Constructor Editor.
Subcategorisation makes it possible to provide a subdivision of the results for one line in the
Constructor editor. Suppose you have a query that looks for S-V-O sentences. When you want
to know what different kinds of subjects SVO sentences occur in, act as follows:

1. Provide a variable (e.g. sstrcat) with the type of the subject. You can simply take a
feature of the subject (if your particular xml corpus provides that), or write a function
giving you the subject type, €.g: sstrcat := tb:SubjectType ($sbj). This function
could return, for instance, the values pronoun or fulinp.

2. Take either the function tb:MyForestcat Or th:MyForestCatMsg as “‘return” functions of
your query.

3. Provide sstrcat as argument to the return function.

When your query has been executed, the query itself will, as usual, have its own line in the
results table. On top of that there will be one line in the results table for each different value

you subcategorize on. The SVO example above would have one line for pronoun subjects and
another line for fu11np subjects.

8.4.5 Executing an Xquery project

Execution of a project that uses the Xquery engine takes place in exactly the same way as
execution of Penn-psd projects: press F10 or select Tools/Execute. The only difference is the
way in which the queries are being executed internally. The Penn-psd projects use a command

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 45

CorpusStudio

shell to call an external java function, while the Xquery projects make use of the saxon Xquery
engine inside CorpusStudio.

8.5 Producing a database of results (Xquery)

CorpusStudio allows for the creation of an xml database based on the output of a particular line
in the Constructor editor (see also 4.6). Right now, this is only possible for Psdx-Xquery
projects.

The xml format of the database is the same CrpOview scheme as the one used for the xml file
containing all output of a Corpus research project (see appendix 9.1). There are a few “standard”
fields supplied for the database:

e Text. The sentence in which the hit occurs, including the preceding and following context
lines that have been specified.

e Psd. A syntactic break-down of the search hit in bracketed labelling.

e Pde. The translation of the ‘hit’ sentence into English, if this has been supplied in the psdx
text file.

User-defined fields can be added to the database output in the following way:
a) Have the query produce a semi-colon separated string with the values for the user-
defined fields.
b) Make this string available as “message” variable using the Xquery function ru:back ()
(see the [strMsg] argument in section 9.4.7).
c) Specify the names for the user-defined features in the “features for each Dbase result”
textbox.

An example query that (a) creates a semi-colon separated string for the user-defined fields and
(b) makes it available as ‘message’ variable in the ru:vack () function looks like this:

<TEI>
{

(: Look for main clauses :)
for $search in //eTree[ru:matches(Q@Label, $ finiteverb)]

.. (other Xquery code is skipped)..

(: Make features :)

let Sdb := concat($feat cls, ';', $feat obj, ';',
$feat lab, ';', Sfeat txt, ';', $lem, ';',
$sNum, ';', SvbType, ';', S$Stype)

(: There should be a lemma and a type :)
where (
$lem != '!'
and $type != "'
)
(: Return the main clause :)
return ru:back($search, db, Scat)
}
</TEI>

The variable sdv is filled with a semi-colon separated string through the Xquery function
concat (), and this string is the second (!) argument of the built-in CorpusStudio function

ru:back()}

! The main part of this code has been skipped. It contains definitions for the variables ($feat cls, $feat obj,
$feat lab, $feat txt, $lem, $sNum, $vbType, $type) that are passed on in the $db string, and it also
contains a definition for the subcategorization variable $cat, which is the third argument in ru:back ().

46 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

The procedure to specify the names of the user-defined features, so that they appear in the
textbox [features for each Dbase resull], is as follows:>

1. Features tab: open the “Features” tab page within the Constructor Editor in one of
two ways.
a. Press the [...] button just above the “features for each Dbase result” textbox
b. Press the tab page “Features”
2. Add features: use the bottom-right button “Add” and specify a name in the dialog
box. Make sure the name does not contain any spaces.
Delete features: select the feature in the listbox, and use the button “Remove”
4. Sort features: select the feature (make sure it is selected!) and then use the Up-Arrow
and Down-Arrow buttons on the bottom side of the window
5. Pre-calculation: the program assumes by default that the features that are specified
here receive a value (even spaces or hyphens count as values) in the query that is
associated with this constructor line.
It is only features that are not specified in the semi-colon separated list (the sao
variable in the example above) that should have a not-flagged “Pre-calculation”.

(98]

The “Features” tab for the example above looks like this:

Guen: IfinVerhAmhiLemma j Features for each Dbase result: _I
) ICIausa@ﬂ ;Objecti@d2 bl abeltE3 Verbiaid ;L emmadE5:bd
Input: ISource j I] Make a complement file
¥ Show the DUTPUT af this query in a Result-ine " Store output (and cmp) of this line LCieate result database
Fesult tag: IfinVerbAmbiLemma ™ Do naot include examples Show result locations |
Goal Find #finite* werh forms that have an awbiguous lewna

Comments Features |

Mame | Fit

Marne IExample

Example -1
Clause
Obiject
“YhlLabel
Werh

[~ Feature is pre-calculated

Lemma
MED_number

VerbType

== N =T T S PR U

il il add | Remove |

Figure 26 User-defined features for a database of results

AmbiType

The eight features that are passed on through the sav variable in the example above receive the
names “Clause”, “Object”, ... “AmbiType”. The order of the features in the sav variable is
retained. (Changing the order of the features in the database Feature tab page results in a
mismatch between feature name and value.)

The feature “Example” has an un-flagged “Feature is pre-calculated” property, since it is
not part of the sap variable. It receives a location “-1”. Unspecified features like this will appear
in the created database (without having any predefined values), and they will precede the other
features.

Once the features have been specified in the database Features tab page, and provided the
queries have been run (using F10 or Tools/Execute Constructor), a database can be created by

2 The textbox itself, having a green background color, cannot be filled manually.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 47

CorpusStudio

pressing the button “Create result database” on the Constructor editor tab. CorpusStudio will
create the database and supply the location where it has placed the resulting xm! file.

Be sure to change the name (and the location) of the database, so as to prevent it from
being overwritten accidentily, when the project is executed again later.

The database that is created in this way is an xm!/ file, and it can be used in a number of different
ways:

1. Editing. The “Cesax” program contains a special database editor tab page, and it
allows jumping to the lines in the psdx texts easily from within the database. The
editor is supplied with commands to do find-and-replace operations on the user-
defined database fields. It also allows database features to be transferred to the psdx
texts themselves, should that be desirable.

2. XSLT stylesheet. It is possible to use an xs/t file to transform the xm/ database file to
html or another type of xml. The format of the database xm/ file is supplied in the
appendix (section 9.2), and can serve as reference for this option. Development should
take place through the software supplied by other parties.

8.6 Queries on a database of results

The previous section has outlined how a database of results can be produced using
CorpusStudio. Such a database can then be imported into the “Cesax” program, and edited,
tweaked and expanded from there (see the Cesax manual for information about that process).
Once you have a good, solid, verified database of results, you may want to combine the
results in different ways and count them. Since the database results are in xm/ format, you can
use any program you want to do the counting. If you are familiar with Microsoft Access, you
could use that program. You could, however, also consider using CorpusStudio for this task.
CorpusStudio allows creating projects that have a result-database as input. Create a
database processing project in the following way:
a) Create a new project of type “Xquery-psdx”.
b) Go to the “Files” tab page, and press on “Select Input Files...”
c) Select one (and only 1) xm! file that contains your result database
1) Do not change the “input file extension” (it remains .psdx)
i1) Make sure you save your project

Once you have prepared your project as indicated here, you can write queries for it. Go to the
“Query” tab page, and select “Query/New” from the menu-bar. Make sure you check “The
query involves a database™:

B rrovide a name for your qUEry.. x|

Mame; IEIeftedEat

¥ The query ifvolvesz a D atabaze

Cancel | Ok, I

CorpusStudio will initialize your database query in the following way:

48 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

1

2

3. (: Look through all the result entries in the database :)
4. for $search in //Result

5 (: Get the value of Featurel :)

6

7

8

let $ftl := S$search/child::Feature[@Name='Featurel']/@Value
(: Get the value of the Catlegory] :)

. let S$cat := $search/QCat

9.

10. (: The feature must have a value, and so must the category :)

11. where (not ($ftl = '")

12. and not (Scat = '")

13.)

14. (: Subcategorize on the value of Featurel :)

15. return ru:back($search, '', $ftl)

16.}

17.</TEI>

You need to edit the query that CorpusStudio supplies according to your own needs. While
doing so, you can make use of your own features (see line #6 for a way to retrieve the value of
the feature called “Featurel”; you need to change “Featurel” in the name of your own feature).
You can also make use of the “Cat” value; this value is visible and searchable in the Cesax
display of the database.

As with other queries, you can define your search criteria in standard Xquery terms, make
use of the ru: preceded built-in functions and make use of your own tb: preceded functions
defined in the Definitions tab.

8.7 The lexicon option

The main goal of CorpusStudio is to provide a user-friendly interface facilitating Corpus
Research Projects, which typically consist of a number of queries that have to be run in a
particular order to get the desired results.

The CorpusSearch2 engine, used for processing treebank encoded psd files, contains
more functionality than selecting sentences that fulfill a number of syntactic criteria. One of the
additional options provided with CorpusSearch2 is made available in CorpusStudio too, and
this is the “lexicon” option. If you supply a query just with the line nake 1exicon: t, then the
CorpusSearch2 engine makes a dictionary of words occurring in the texts, and divided over the
syntactic categories of the endnodes they occur in. CorpusStudio combines the results for all
the texts specified in the “Input” (see tabpage “Files”), and makes these available in the html
file shown on the “Results” tabpage, which normally contains just the query results. Figure 19
contains an example of the result.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 49

CorpusStudio

W corpus Studio X B 1ol =l
File Edit Wiew Tools Help U:\Data Files\CorporalCorpusstudiolDick_t1.crpx

Generall Filez I Period Editorl Definitionsl Query Editorl EonstructorEditorI Hierarc:h_l,ll Tree I Dutput Maritar | Output Files Results |\.-"iewer|

&
Deseription=DictP File=DictP Period=F1 Back =
Desaiption=DictP File=DictP Period=B1 Back
Desciption=DictP File=DictP Period=B2 Back
Description=DictP File=DictP Period=B3 Eack
Lexicon
Lexeme Period POS Freq
F12 132 M3 FW 4
£39 M3 FW 1
Fabove above B2 ADV 2
Fabove above B2 P 3
Fal B2 BEP 4
Fai B2 HVP 3
Fapollonius fApollons Apollonius 03 NEMG 5
Fapollonius EApollonus Apollonius O3 NEAMW 73
Fbibenchen M1 VB 1
fblode o3 N°D 1
Fromep comep M3 VEBP 27
Feumeliche M1 ADV 1
Foynelic o3 ADMMN 1

i e e . hd |

Results loaded From: D:\Data filesiCorporal CorpusStudiol TestyDick_Y1-results. html

Figure 27 CorpusSearch?2 lexicon output made available in CorpusStudio

The lexicon results are provided in the form of a table that can be copied to Excel and then
processed further by the user. Result statistics are subcategorized on the period and the Part-
Of-Speech tag.

9 Frequently asked questions

This section lists the “frequently asked questions” that have come up until now. You are
welcome to send your questions to E.Komen@Let.ru.nl, and I will see if your question (and its
answer) should be placed here in this section.

9.1 How do I get the number of results per text?

Once you have executed your queries using F10 (or Tools/Execute), you can get a more detailed
overview of the results for one query line in the following way:

1. Go to the Constructor editor tab.

2. Select the line whose output you would like to view in detail.

3. Press Show result location.

You are now redirected to the Results tab. This now gives an overview of the results for this
query line. At the bottom of the results you will find a table with a count of results per text.
9.2 Why do I miss results if I use the complement as input?

Suppose you have a query that produces an output as well as a complement. Your query may
focus on subclauses, of which there may be several in each sentence. As soon as a particular
sentence has at least one hit in one of its subclauses, the rest of its subclauses will not be made

50 25-11-2019 12:02

mailto:E.Komen@Let.ru.nl

Radboud University Nijmegen, Centre for Language Studies

available to the complement, because the complement only accepts sentences as a whole. You
will therefore miss certain subclauses: they will not provide a hit in the output of one query,
and they are not made available as input for another query where they could have given a hit.
The solution to this problem is to be very much aware of what you are doing. If you work

with queries that can, as a maximum, produce one hit per sentence, then you can use the
complement approach. If this is not the case, then don’t use complements. There are two
alternatives to the complement approach:

1. Use the output of one query as the input for all the required other queries.

2. Use the Xquery engine and set up a subcategorization query.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 51

CorpusStudio

10 Appendix

This appendix contains vital information for those who would like to process the results of a
corpus research project themselves (see 9.1), and also for those who would like to know more
about the different xml formats used for corpus research projects, Xquery-psdx etc (see 9.2).

10.1 The results XML file

When a set of queries is executed, results are gathered in two forms. The first form is an HTML
file, the content of which are shown in the “Results” tab page. The second form is an XML file,
and it is the format of this file that is being discussed in this appendix.

The name of the results XML file is <FileName>-results.xml, and it is located in the
same directory as the HTML output file.

The results XML file consists of the following sections:
e General
o The project name, creation date, source and destination directories
PeriodList
o This is a copy of the PeriodInformation xml file, containing only information
about those texts from the corpora, that are actually being used in the queries for
this corpus research project.
e Table <OutList>
o A list of <Out> elements, each of which describes one QC line as defined in the
Constructor Editor.
e Table <CatOutList>
o A list of <CatOut> elements, which contains all individual subcategorisation
names.
o Each element links to an <Out> element by coindexing
(CatOut.QCline=Out.Outld).
e Table <CatList>
o List of <Cat> elements, each of which contains the count, mean and sdev results
for one cell in the subcategorisation results table.
o Each line contains the results for the combination Period/QCline/Subcategory.
o The results for all periods for one particular subcategorisation line can be found by
coindexing (CatOut.QCline=Cat.QCline AND CatOut.Name=Cat.Name).
e Table <OviewList>
o A list of <Oview> elements, each of which contains the Count, Mean and Sdev
results for one cell in the results table (i.e. the non-subcategorized elements of it).
o Each line contains the results for the combination Period/QCline.
o The results for one particular line defined in the constructor editor can be found be
coindexing (Out.Descr=Oview.Out).
e A list of all individual <Result> elements
o Each element links to a cell in the <Oview> table through coindexing
Result.Oviewld=Oview.Oviewld.
o Each element also links to a cell in the <Cat> table through coindexing of
Result.Cat=Cat.Name.

The relation between the different XML tables is illustrated in Figure 20.

52 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

| PeriadFile
Periadld

W Id
Fileld
N Fame
Perior Search
¥ Periodld IPmat
Hame IPsub #
Do | Rresurt
- - % Resld
Until Oviewld
File
Textld
Cat
Msg
:,_,o . — farestld
\uf—:w , | Etreeld
¥ Oviewld
- — Period
-’-“3 | = Out
¥ Outld
Descr L Er:t?:
File Count
Mean
Sdev o= -
—— | Result_1
Catid % Resld
Oviewld Oviewld
:'-ﬁt'.’Jut achne -y
s Hame Textld
¥ catoutld Period Cat
Name Count Msg
Qcline Mean forestld

Catline Etreald

Sdev

Figure 28 Relations between the tables in the Results XML file

10.2 Schema for xml formats used

CorpusStudio makes use of several different xm/ formats. Each of these formats is described by
a schema, an xsd file. These schema are available on the CorpusStudio homepage which you
can reach from the Radoud University website. Table 2 gives an overview of the different
schema files that should be available.

CrpResult.xsd <CrpOview>
CorpusResearchProject.xsd <CorpusResearchProject>
PeriodDef.xsd <PeriodList>

Psdx.xsd <TEI>

Table 2 Xml schema definitions in use for CorpusStudio

10.3 Useful Xquery function definitions

You are, of course, at liberty to make your own Xquery functions, but there are a number of
functions you may find useful, and these are included in this section. Some of these may actually
be available already on the homepage of CorpusStudio.

Note that some of these functions use built-in Xquery functions which are described in
section 9.4. Since they make use of the CorpusStudio in-built facilities, such user-defined
Xquery functions will obviously not work outside of CorpusStudio.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 53

http://www.ru.nl/lits/sub-programmes/grammatical/syntax-information/software/

CorpusStudio

10.3.1 Convert a chain into a sequence

You might want to convert a following or preceding coreferential chain into a sequence of
nodes, which you can then process using the standard Xquery sequence processing FLOWR
functionality. The following Xquery function recursively converts a chain into such a sequence,

and it starts at the node you provided.

(¢ - =77 ===~
Name : tb:Chain
Goal : Get all the nodes on the chain started by [$ndThis]
History:
03-04-2012 ERK Created

declare function tb:Chain($ndThis as node()*) as node()*
{
(: Get the next element -- if existing :)
let S$nxt := if (count($ndThis)=1) then ru:chnextidt ($ndThis)
else ru:chnextidt(($ndThis/.) [last()])

(: Combine the new node with the others :)

return
if (exists(Snxt)) then $ndThis union tb:Chain ($nxt)
else $ndThis

54 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

10.4 Built in functions for Xquery-psdx projects

Several Xquery functions have been built into CorpusStudio that should facilitate working with
Xquery-psdx projects. The functions are described in this section. All functions are part of the

ru section.

10.4.1 All

Definition:
Types:

Description:

Note:

10.4.2 Ant

Definition:
Types:

Description:
Note:

ruzall(ndArgl, strType, strPattern) (under construction)

ndArgl node()

strType xs:string = Precedes, Follows, Child, Sibling

strPattern xs:string

output node()

Find all nodes that relate to ndArgl by a relation of strType. If strPattern is not
empty, only return the selected nodes if their label (or cat) compare with the
pattern you provide.

The implementation of this function has not been completed yet. You are
advised to use ror-loops and other Xquery functions in conjunction with
ru:zone in order to simulate ru:all functionality.

ru:ant(ndArgl)

ndArgl node()

output node()

Return the antecedent node of ndArgl.

This function is not able to handle empty nodes as input, so you have to build a
wrapper around it to take care of that.

10.4.3 Antldt

Definition:
Types:

Description:
Note:

10.4.4 Ard

Definition:
Types:

Description:

ru:antidt(ndArgl)

ndArgl node()

output node()

Return the antecedent node of ndArgl, provided the ‘RefType’ of the link from
ndArgl is ‘Identity’ or ‘CrossSpeech’.

This function is not able to handle empty nodes as input, so you have to build a
wrapper around it to take care of that.

ru:ard(ndArgl, strType)

ndArgl node()

strType xs:string

output xs:boolean

Mark the referential distance of constituent ndArgl of your own defined
strType. The HTML results of the CorpusStudio run will contain a table with
average referential distances (ARD) subdivided over your strType values as
well as over the periods as defined in the Period Editor. The referential distance
measure taken is the “IP-distance” — the number of “IP chunks” between the
constituent ndArgl and its antecedent. If there is no antecedent, or if the
referente from ndArgl is cataphoric, then a measure of “0” will be taken. The

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 55

CorpusStudio

results tab page will show two variants of the ARD: one that includes zero
measures and one that does not.

104.5 Avd
Definition: ru:avd(ndArgl, ndArg2, strType)
Types: ndArgl node()

ndArg2 node()
strType xs:string
output xs:boolean

Description: Mark the average distance between constituent ndArgl and ndArg?2 of your
own defined strType. The HTML results of the CorpusStudio run will contain a
table with average distances (AVD) subdivided over your strType values as
well as over the periods as defined in the Period Editor. The referential distance
measure taken is the “IP-distance” — the number of “IP chunks” between the
constituent ndArgl and its antecedent ndArg2.

104.6 Avg
Definition: ru:avg(intNum, strType)
Types: intNum xs:integer

strType xs:string
output xs:boolean

Description: Keep track of the average over the values supplied by intNum. The HTML
results of the CorpusStudio run will contain a table with these averages, which
will be subdivided over your strType values as well as over the periods as
defined in the Period Editor.

10.4.7 Back
Definition: ru:back(ndArgl, strMsg, strCat)
Types: ndArgl node()

strtMsg xs:string (optional)
strCat xs:string (optional)
output node()

Description: This built-in function is an alternative to the th:Forest functions that are
supplied in the standard “definitions” file. The function should be placed at the
end of the main for .. let .. where .. return (FLOWR) loop, as part of the
return statement. The function returns the <forest> node, supplied with
additional attributes, such as the identifier of the ndArgl node.

There are two optional (string) variables that can be supplied. The variable
strtMsg may contain a string (produced for example using Xquery standard
concat) with information that is supplied with the output of this particular
result. The variable strCat may contain a subcategorization string. The output
for this particular queryline will then, in addition to the normal tabular output,
be subdivided over the values of strCat. One may, for example, take NP
features such as the NPtype or the GrRole as subcategorization values.

A user implementation that can be used instead of the built-in ru:back function
should minimally look as follows:

56 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

declare function tb:back ($ndThis as element ()?) as element ()
{

(: Get the <forest> element of which we are part :)

let $src := $ndThis/ancestor-or-self::forest

(: Get the ID of ourself :)

let $id := $ndThis/Q@Id

(: Copy the attributes to a new forest element :)
return element forest { attribute TreelId {$id}, S$Ssrc/@* }

i

10.4.8 Before

Definition:
Types:

Description:

10.4.9 Cat

Definition:
Types:

Description:

ru:before(ndArgl)

ndArgl node()

output node()

If existing, return the first <eTree> node occurring before ndArgl but having
similar characteristics in the following way (only for “psdx” projects):

(1) attribute erave1 is the same

(2) it has an <erear> child with the @Text value the same as ndArgl’s child

ru:cat(ndArgl, strType)

ndArgl node()

sttrType xs:string (“phrase”, “function”)

output node()

Return the phrasal or functional part of the category of ndArgl.

10.4.10 ChNext

Definition:
Types:

Description:

Note:

ru:chnext(ndArgl)

ndArgl node()

output node()

Return the node following on ndArgl, and pointing to it. The node may also be
a descendant of ndArgl, as happens often in a relative clause.

This function is not able to handle empty nodes as input, so you have to build a
wrapper around it to take care of that.

10.4.11 ChNextldt

Definition:
Types:

Description:

Note:

ru:chnextidt(ndArgl)

ndArgl node()

output node()

Return the node following on (or descending from) ndArgl, and pointing to it,
provided the ‘RefType’ of the link from ndArgl is ‘Identity’ or ‘CrossSpeech’.
This function is not able to handle empty nodes as input, so you have to build a
wrapper around it to take care of that.

10.4.12 ChLen

Definition:
Types:

Description:

ru:chlen(ndArgl, strType)

ndArgl node()

strType xs:string (preceding, following)
output integer

Return the length of the chain starting from ndArgl.
The direction of the chain depends on strType.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 57

CorpusStudio

Note:

10.4.13 Conv

Definition:
Types:

Description:

10.4.14 Dist

Definition:
Types:

Description:

When strType is “preceding”, then the length of the preceding chain is
returned, and when strType is “following”, then the length of the following
chain is returned.

The length is zero (0) if only ndArgl exits, and there is no antecedent (with
strType ‘preceding’) or no following node pointing back to ndArgl (with
strType ‘following’).

ru:conv(strText, strType)

strText xs:string

strType xs:string = ‘OFE’, ‘Lcase’, ‘Ucase’, ‘clean’

output xs:string

The string strText is converted on the basis of the conversino type specified in
strType. Two conversion types are currently supported. The first one, signalled
by “OE”, converts +a, +t, +d etc into their corresponding unicode strings @, b,
and 0 respectively. The second and third one, signalled by “Lcase” and
“Ucase”, convert the string into its lower-case or upper-case equivalent
respectively.

A few combinations are allowed too: ‘Lcaset+OE’ and ‘Ucase+OE’.

ru:dist(ndArgl, ndArg2, strType)

ndArgl node()

ndArg2 node()

strType xs:string > ‘word’, ‘forest’

output xs:integer

Get the distance between constituent ndArgl and ndArg2 in the measure
defined by strType. The measure may be word, in which case the number of
intervening words is returned. If it is forest, then the difference between the
forest Id’s under which ndArgl and ndArg?2 are located is returned. A negative
distance indicates that there is an error.

10.4.15 Distri

Definition:
Types:

Description:

ru:distri(intNum, str'Type) (under construction)

intNum xs:integer

strType xs:string

output xs:boolean

Keep track of the distribution over the values supplied by intNum. The HTML
results of the CorpusStudio run will contain one table per strType with the
distribution of the values supplied by intNum. The distribution is subdivided
over the periods as defined in the Period Editor.

10.4.16 DocRoot

Definition:
Types:
Description:

58

ru:docroot()

output node()

Return the highest node in the current document. This is the <t=1> root in .psdx
files, for instance. This function allows one to get out of the local environment
of the current sentence (the <forest> element in .psdx files), so that, for
instance, the meta information available at the beginning of the text can be
accessed.

25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

10.4.17 ErrMsg

Definition:
Types:

Description:

ru:ErrMsg(ndArgl, strLoc, strText)

ndArgl node()

strtLoc xs:string

strText xs:string

output xs:boolean

The output of this function is always frue. A message box is displayed with the
message strText, and the user can press “OK”, but only under the following
conditions: (1) the function is being evaluated, (2) the location of node ndArgl
coincides with strloc.

10.4.18 Feature

Definition:
Types:

Description:

10.4.19 HasF

Definition:
Types:

Description:

10.4.20 Head

Definition:
Types:

Description:

ru:feature(ndArgl, strName)

ndArgl node()

strtName xs:string

output xs:string

Get the feature value of the feature named strName. This is equivalent to
ndArgl/child::fs/child::f[@name='strName’]/@value. The string with this
value is returned.

ru:hasf(ndArgl, strName)

ndArgl node()

strtName xs:string

output xs:boolean

Check if the node ndArgl contains a feature named strName. This is equivalent
to checking the existence of ndargl/child::fs/child::f[@name="strName’].
Returns true if this feature exists, and false otherwise.

ru:head(ndArgl)

ndArgl node()

output xs:boolean

Determine what the head of the NP node ndArgl is. This function only works
for the historical English corpora, and only for Noun Phrases.

10.4.21 IsNew

Definition:
Types:

Description:

ruzisnew(ndArgl, intldtDist, strRefOk)

ndArgl node()

intldtDist xs:integer

strRefOk xs:string

output xs:boolean

Check if the node ndArgl is new in a particular sense:

a) The reference type of ndArgl is ‘New’ or ‘NewVar’

b) The reference type is ‘Identity’ or ‘CrossSpeech’ and also:
i. The IPdist to the antecedent is larger than intldtDist
ii. Or else the antecedent of ndArgl has a label like strRefOk

and adheres to ru:isnew itself.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 59

CorpusStudio

10.4.22 Lex

Definition: ru:lex(strtWord, strPos)

Types: strtWord xs:string
strPos xs:string
output xs:boolean

Description: Add the word strWord to a list of lexicon/dictionary entries, keeping track of
the frequency. Forms with different part-of-speech tags (strPos) are kept
separate. The resulting dictionary can be opened using Cesax.
Words taken from the English historical corpora that are passed on to the
lexicon are advised to be treated first through ru:conv(..., ‘Lcase+OE”). This
makes sure the lexemes are kept case-insensitive and the possible leading $-
signs are filtered out.

10.4.23 Line

Definition: ru:line(intNumber)

Types: intNumber xs:integer
output node()

Description: Return the sentence that is intNumber lines further away from me (if positive)
or before me (if negative). The “sentence” is a <forest> element for the psdx
projects.

A special case is ru:line (0), which returns the current <forest> element in
such a way, that the preceding and following forests (as well as the
hierarchically higher nodes) can be accessed.

10.4.24 Location

Definition: ru:Location(ndArgl, strType)
Types: ndArgl node()
strType xs:string
output xs:string
Description: The function Location seeks to find the location of the node ndArgl with
respect to the main clause (i.e. IP-MAT?®) inside which it is located. The
resulting string with the location depends on the particular strType chosen. The
output string, in general, contains letters for nodes preceding and following
ndArgl within the main clause. The following types are distinguished:
detailed - The calling node ndArgl is shown with a capital letter.
The following letters are used: s (subject), o (object), t (temporal NP),
1 (Ieft dislocation), ¢ (CP), i (IP), p (prepositional phrase), v (verb),
a (adjunct), x (other).
selected - The calling node ndArgl is shown with a capital letter.
The following letters are used: s (subject), o (object), 1 (left dislocation),
p (prepositional phrase), f (finite verb), ¢ (CP), v (other verb form),
x (other).
finverb - Use f for the location of the finite verb, and x for other constituents.
Mark my own position with s (subject), o (object), 1 (left dislocation) or
p (prepositional phrase).

10.4.25 Matches

Definition: ru:matches(strText, strPattern)
Types: strText xs:string

60 25-11-2019 12:02

Description:

Definition:
Types:

Description:

Radboud University Nijmegen, Centre for Language Studies

strPattern xs:string

output xs:boolean

The string strText is compared with the pattern supplied by strPattern. The
behaviour is much like the visual basic function 1ike. The strPattern can
contain a set of different patterns, separated by a vertical bar “”. Here is an
example: DoLike(“NP-POS-3”, “NP|NP-*"). This function will return true,
since NP-POS-3 matches with the second pattern in the list: NP-*,
ru:matches(strText, strPatYes, strPatNo)

strText xs:string

strPatYes xs:string

strPatNo xs:string

output xs:boolean

The string strText should match the pattern supplied by strPatYes, but should
not match that of strPatNo. The behaviour is much like the visual basic
function 1ike. The strPatYes and strPatNo can contain a set of different
patterns, separated by a vertical bar “”. Here is an example: DoLike(“NP-POS-
37, “NP|NP-*). This function will return true, since NP-POS-3 matches with
the second pattern in the list: NP-*.

10.4.26 Message

Definition:
Types:

Description:

ru:Message(strText)

strText xs:string

output xs:boolean

The output of this function is always frue. When the function is evaluated
(which happens when it occurs in a boolean expression), a message box is
displayed with the message strText, and the user can press “OK”.

10.4.27 NodeText

Definition:

Types:

Description:

See also:

10.4.28 One

Definition:
Types:

Description:

ru:NodeText(ndArgl)

ru:NodeText(ndArgl, strType)

ndArgl node()

strType xs:string > ‘OFE’, ‘Lcase’, ‘Ucase’, ‘clean’

output xs:string

Return the text of the terminal nodes within ndArgl. The text is delivered as it
is, separated by spaces where needed. A second argument strType allows
implicit use of the function ru:conv to streamline the output.

ru:PhraseText

ru:one(ndArgl, strType, strPattern)

ndArgl node()

strType xs:string

strPattern xs:string

output node()

Find the one node that relates to ndArgl by a relation of strType. If strPattern
is not empty, only return the selected node if its label (or cat) compares with
the pattern you provide. The values of str'Type can be the following:
iPrecedes —the immediately preceding sibling of ndArgl

iFollows — the immediately following sibling of ndArgl

FirstChild — the first child of ndArgl

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 61

CorpusStudio

LastChild — the last child of ndArgl

FirstTerm — the leftmost terminal node under ndArgl

LastTerm — the rightmost terminal node under ndArgl

PrecHigh — the highest descendant of ndArgl’s parent preceding ndArgl
FollHigh — the highest descendant of ndArgl’s parent following ndArgl
Parent — the parent node of ndArgl

Descendant — the first descendant of ndArgl fulfilling the conditions

10.4.29 Out
Definition: ru:out(strCsv)
Types: strCsv xs:string

output xs:boolean

Description: Store the information in strCsv. This information can contain different entities,
which have to be separated by a semicolon. The information is added to one
file for the whole corpus research project, and each line is automatically
supplied with three standard elements:

text — the filename of the text (without path and extension)
period — the period abbreviation of the text
line — the line number within the constructor editor

After a corpus research that uses the ru:out function has finished, it will
indicate the location and name of the .csv file where the results have been
stored. This file can be opened and processed with programs like Excel.

10.4.30 PeriodGrp

Definition: ru:periodgrp(strDivision)

Types: strDivision xs:string
output xs:string

Description: Return the period-group (as defined in the period-editor tab) of the currently
processed file, depending on the period-division strDivision.

10.4.31 PhraseText

Definition: ru:PhraseText(ndArgl)

Types: ndArgl node()
output xs:string

Description: Return the text of the terminal nodes within ndArgl, supply brackets around
the text and start the first bracket with the category of the phrase ndArgl. The
text is delivered as it is, separated by spaces where needed.

See also: ru:NodeText

10.4.32 Random

Definition: ru:random(ndArgl, numPtc)

Types: ndArgl node()
numPtc single (floating point number of single precision)
output xs:boolean

Description: A random (floating point) number is generated between 0 and 100 and
compared with the percentage numPtc. If the random number is below numPtc,
then the function returns true else false. Use this function in the where
condition of your query to get a representative percentage of all your data.

62 25-11-2019 12:02

Radboud University Nijmegen, Centre for Language Studies

10.4.33 Refnum

Definition:
Types:

Description:

ru:refnum(ndArgl)

ndArgl node()

output xs:string

If the constituent represented by ndArgl contains an internal coreferential
identifier, such as when it has a child *t+-1, then ru:refnum () returns the
number of this identifier.

10.4.34 RefState

Definition:
Types:

Description:

ru:RefState(ndArgl)

ndArgl node()

output xs:string

Return an estimation of the referential status of the constituent represented by
ndArgl. The estimation takes into account the NPtype (which should have
been supplied, e.g. using Cesax), postmodification, and the usage of an
indefinite article.

10.4.35 Relates

Definition:
Types:

Description:

ru:relates(ndArgl, ndArg2, strType)

ndArgl node()

ndArg2 node()

strType xs:string

output xs:boolean

true if ndArgl relates to ndArg2 with a relation strType.

The values of strType can be the following:

iPrecedes —ndArgl is the immediately preceding sibling of ndArg2

Precedes —ndArgl linearly precedes ndArg2 (the rightmost terminal node of
ndArgl precedes the leftmost terminal node of ndArg2)

iFollows —ndArgl is the immediately following sibling of ndArg2

Follows —ndArgl linearly follows ndArg2

iDominates— ndArgl is the parent of ndArg2

Dominates —ndArg] is an ancestor of ndArg?2

Sibling ~ —ndArgl is a sibling of ndArg2

10.4.36 Reduce

Definition:
Types:

Description:

ru:reduce(strType)

strPattern xs:string

output xs:string

Reduces the string in strPattern to one that has no subsequent identical
characters.

10.4.37 Retrieve

Definition:
Types:

Description:

ru:retrieve(strType)

strType xs:string

output xs:string

Returns the value stored in storage space strType

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 63

CorpusStudio

10.4.38 Root node

Definition: ru:rootnode(ndArgl)

Types: ndArgl node()
output node()

Description: If ndArgl points to another constituent, then ru:rootnode returns the node that
is last on the coreferential chain of ndArgl. The function returns “nothing” if
ndArgl does not point to anything.

10.4.39 Same index

Definition: ru:sameindex(ndArgl)

Types: ndArgl node()
output node()

Description: Get the first node under the current forest having the same index as the label of
the node ndArgl.

Note: This function is not yet implemented.

10.4.40 SetAttrib

Definition: ru:setattrib(ndArgl, strName, strValue)

Types: ndArgl node()
strName xs:string
strValue xs:string
output xs:boolean

Description: Change the value of attribute strName of node ndArgl into strValue.
Save the text file (for the moment only .psdx) with the emended attribute
values. This function will only be evaluated when you take it up in the where
part of the query.

Note: This function is experimental.

10.4.41 Stack

Definition: ru:stack(strText, strType)

Types: strText xs:string (‘add’, ‘contains’)
strType xs:string
output xs:boolean

Description: Different functions for storing strings and checking the presence of them in a
stack that is cleared in the following instances: (a) a new text starts, (b) a new
section starts in a text. The action depends on strType. The action ‘add’ pushes
the word in strText into the stack, and the action ‘has’ just checks if the word
strText is currently somewhere in the stack.

10.4.42 Store

Definition: ru:store(strValue, strType)

Types: strValue xs:string
strType xs:string
output xs:boolean

Description: Store value strValue in the global storage space named strType.
The function returns true if the storage was succesful.

10.4.43 TextSize

Definition: ru:textsize(strName, strType)
Types: strtName xs:string

64 25-11-2019 12:02

Description:

Radboud University Nijmegen, Centre for Language Studies

strType xs:string (‘main’, ‘sub’, ‘words’)

output xs:integer

Get the size of the text called strValue in terms defined by strType: ‘main’ =
main clauses, ‘sub’ = subclauses, ‘words’ = words.

The function returns true if the storage was succesful.

10.4.44 TimblPrep

Definition:
Types:

Description:

ru:timblprep(strCsv, intPerc)

strCsv ~ xs:string

intPerc xs:integer

output xs:boolean

Store the comma-separated information provided in strCsv in a trainingset file
and a test set one, which can be used by TiMBL. The information can contain
different entities, which have to be separated by a semicolon or a comma. The
information is added to one file for the whole corpus research project, and each
line is automatically supplied with one standard element:

line — the line number within the constructor editor

The parameter intPerc gives the percentage of lines that should be put into the
training set. The lines are divided in a random manner.

U:\Data Files\Research\RU-Focus\Coreferences\CorpusStudio\2019_CorpusStudioManual V3-6.docx 65

CorpusStudio

10.4.45 Trace

Definition: ru:Trace(strText)

Types: strText xs:string
output xs:boolean

Description: The output of this function is always frue. When the function is evaluated
(which happens when it occurs in a boolean expression), the string supplied as
strText is displayed on the Output Files tab.

10.4.46 Words

Definition: ru:words(ndArgl)
Types: ndArgl node()
output xs:integer
Description: Get the number of words in the constituent ndArgl.

66 25-11-2019 12:02

	Corpus Studio Manual
	1 Introduction
	2 Installation
	3 Settings
	3.1 The “General” tab
	3.2 The “Project Editor”

	4 Corpus research projects
	4.1 The “General” tab
	4.2 The “Files” tab
	4.3 The “Period Editor” tab
	4.3.1 Definition of periods
	4.3.2 Period divisions
	4.3.3 Saving period information

	4.4 The “Definitions” tab
	4.5 The “Query Editor” tab
	4.6 The “Constructor Editor” tab
	4.7 The “Hierarchy” tab
	4.8 The “Tree” tab
	4.9 The “Output Monitor” tab
	4.10 The “Results” tab
	4.11 The “Viewer” tab

	5 Walkthrough #1: make a research project from scratch
	5.1 Introduction
	5.2 Create a new project
	5.2.1 Specify general information
	5.2.2 Get period definitions
	5.2.3 Import a “definitions” file
	5.2.4 Create your own queries
	5.2.5 Putting the queries in order

	5.3 Verify your project
	5.4 Execute your project
	5.5 Look through the results

	6 Walkthrough #2: creating a project with the wizard
	6.1 Cesax: prepare a corpus search
	6.2 CorpusStudio: creating a new project

	7 Common tasks
	7.1 Restricting input to part of a corpus
	7.2 Wordcounts

	8 Advanced tasks
	8.1 Specifying input files manually
	8.2 Using files with different exentions
	8.3 Creating period definitions
	8.3.1 Make a new period information file
	8.3.2 Add a period
	8.3.3 Add texts to a period
	8.3.4 Add period groups
	8.3.5 Clause counting

	8.4 Using Xquery projects
	8.4.1 Creating an Xquery-psdx project
	8.4.2 Query format
	8.4.3 Accessing constituents through Xquery
	8.4.4 Subcategorisation
	8.4.5 Executing an Xquery project

	8.5 Producing a database of results (Xquery)
	8.6 Queries on a database of results
	8.7 The lexicon option

	9 Frequently asked questions
	9.1 How do I get the number of results per text?
	9.2 Why do I miss results if I use the complement as input?

	10 Appendix
	10.1 The results XML file
	10.2 Schema for xml formats used
	10.3 Useful Xquery function definitions
	10.3.1 Convert a chain into a sequence

	10.4 Built in functions for Xquery-psdx projects
	10.4.1 All
	10.4.2 Ant
	10.4.3 AntIdt
	10.4.4 Ard
	10.4.5 Avd
	10.4.6 Avg
	10.4.7 Back
	10.4.8 Before
	10.4.9 Cat
	10.4.10 ChNext
	10.4.11 ChNextIdt
	10.4.12 ChLen
	10.4.13 Conv
	10.4.14 Dist
	10.4.15 Distri
	10.4.16 DocRoot
	10.4.17 ErrMsg
	10.4.18 Feature
	10.4.19 HasF
	10.4.20 Head
	10.4.21 IsNew
	10.4.22 Lex
	10.4.23 Line
	10.4.24 Location
	10.4.25 Matches
	10.4.26 Message
	10.4.27 NodeText
	10.4.28 One
	10.4.29 Out
	10.4.30 PeriodGrp
	10.4.31 PhraseText
	10.4.32 Random
	10.4.33 Refnum
	10.4.34 RefState
	10.4.35 Relates
	10.4.36 Reduce
	10.4.37 Retrieve
	10.4.38 Root node
	10.4.39 Same index
	10.4.40 SetAttrib
	10.4.41 Stack
	10.4.42 Store
	10.4.43 TextSize
	10.4.44 TimblPrep
	10.4.45 Trace
	10.4.46 Words

