
U:\Data Files\Meertens\CrpWeb\doc\2016_CrpStudioAPI_v1-8.docx

An API for the CorpusStudio web application
Erwin R. Komen

Start: October 8, 2015
This version: 1.7

Date: March 12, 2018 (10:35)

2 Erwin R. Komen

CONTENTS
1 Introduction ... 3

1.1 Short overview: principle components .. 3
1.2 Short overview: interacting with the CRPP webservice .. 4

2 Overview of the CorpusStudio components ... 5
3 Notes on the /crpstudio server component .. 8

3.1 User accounts and logging in/off ... 8
4 The /crpp web service input specification .. 9

4.1 Unified response structure ... 9
4.2 Issuing “crpchg” ... 10
4.3 Issuing “crpdel” .. 11
4.4 Issuing “crpget” .. 11
4.5 Issuing “crpinfo”... 11
4.6 Issuing “crplist” .. 12
4.7 Issuing “crpset”.. 13
4.8 Issuing “dbinfo” ... 13
4.9 Issuing “dblist” .. 14
4.10 Issuing “dbset” ... 14
4.11 Issuing “dbupload” .. 15
4.12 Issuing “debug” ... 15
4.13 Issuing “exe” ... 15
4.14 Issuing “reset”... 16
4.15 Issuing “serverinfo” .. 16
4.16 Issuing “settings” .. 16
4.17 Issuing “statusxq” ... 17
4.18 Issuing “statusxl” .. 18
4.19 Issuing “txt” ... 18
4.20 Issuing “txtlist” .. 18
4.21 Issuing “update” ... 18

5 Web service maintenance ... 21
5.1 Adapt CorpusStudio for use with other corpora .. 21

5.1.1 Requirements .. 21
5.1.2 Installation .. 21
5.1.3 File crp-info.json .. 23
5.1.4 File crpstudio-settings.json ... 24
5.1.5 File crpp-settings.json .. 24
5.1.6 Software sources .. 27
5.1.7 Running .. 27

5.2 Logs and cleanup ... 27
6 Appendices .. 28

6.1 Trace code: change in query .. 28
7 References ... 29

CorpusStudio API 3

1 Introduction
The “CorpusStudio” web application is the web-service based equivalent of the Windows
program with the same name “CorpusStudio” (Komen 2009). The web application consists of
three main components.

1) Main back-end: a web service /crpstudio that communicates with the ‘engine’ and the
front-end

2) Engine back-end: a web service /crpp that executes CRPs (Corpus Research Projects) on
a corpus (on the same server)

3) Front end: a HTML/JavaScript component that only interacts with the /crpstudio back-
end

1.1 Short overview: principle components

Figure 1 Main components of the CorpusStudio web application

Central in the architecture is the /crpstudio component (service #1), since this is the service
to which the user first connects (by typing the URL of the service in a browser). Communication
between the different modules can be divided into several parts:

1) User to /crpstudio: The Java code of /crpstudio takes in the user’s request to start a
CorpusStudio session and reacts by creating and sending an html page. This page is part of
the front-end, the user-interface. The html pages produced by /crpstudio are ‘reactive’:
events like clicking a button or typing text on the web page result in calls to a JavaScript
function—also part of the front-end. The JavaScript functions handle only part of the UI
requests, holding only a limited amount of user-data internally.

2) Javascript to /crpstudio: The JavaScript functions (which are called as a reaction to the
user clicking a web page or typing in a web form) only communicate with the /crpstudio
service. They may need additional information about a CRP or database, which they do by
issuing a POST request to /crpstudio. They may need to start an action (such as renaming
a file, deleting a file and so on), and this too is done by issuing a POST request to
/crpstudio. The requests may result (a) in a response in JavaScript (after which the html
page is updated with the new information), or (b) in a new html page being created by
/crpstudio which then appears on the browser of the user.

3) Service /crpstudio to service /crpp: The /crpstudio component handles many requests
by communicating with the ‘engine’ service /crpp. A request to provide a list of CRPs
belonging to the current user, for instance, is a /crpp/crplist command with a JSON
object argument containing the user’s id. The /crpp service looks in the hosting (virtual or
actual) computer, checks which CRPs belong to the user and returns a JSON list of them to
/crpstudio. It is only the /crpp service that has access to the xml corpora that are searched,
that holds the search results, the result databases and so forth.

4 Erwin R. Komen

The current implementation of /crpstudio holds copies of CRPs on its server when these are
accessed by a user, but this may change in the future. The main goal of /crpstudio is to serve
as a central place where user’s requests enter, where commands to get information are issued
and where responses are processed and then fed back to the user.

The overview of the web application set-up in Figure 1 shows the /crpstudio and the /crpp
services as being separate. They may run on the same computer or on different computers, since
they have separate places where they store information, and the communication between them
is strictly through web service calls. The /crpp component is completely independent, so that
it may serve as a back-end to other applications such as desktop or smartphone applications
from any computer platform or language.

1.2 Short overview: interacting with the CRPP webservice

The /crpp can be used independently of the other components. The most important steps for
this web service are these:

1) Set up the Linux computer that contains the (Java) web service (TODO: ref)
2) Check if /crpp is ready by a simple command without parameters.
3) Use a /crpp/crpset command to upload a CRP to the service (TODO: ref)
4) Issue a /crpp/exe command to start executing the CRP and extract the jobid from the

initial response (Fout! Verwijzingsbron niet gevonden.)
5) Monitor the progress by issuing a /crpp/statusxq command every now and then

(4.14).
6) Once the response (TODO: ref) has the status code “completed”, a table overview of the

results is included in the /crpp/statusxq response.
7) Download individual parts of the results using the /crpp/update command (TODO: ref)
8) Download a results database: not yet implemented
9) Download lexicon information resulting from ru:lex(): not yet implemented

CorpusStudio API 5

2 Overview of the CorpusStudio components
The first chapter of this API provides a sketchy general overview of the three main components
of CorpusStudio. This chapter shows the web application from a slightly different point of view,
dividing it into modules and showing some key settings files.

Figure 2 CorpusStudio overview

A central component is the "Search service", the /crpp web service. This service takes a
CRP as input, executes the queries in this CRP in the order specified by the constructor on the
documents selected by the input. The input texts are expected to be somewhere in the
/etc/corpora area, as defined more specifically by the "indices" section of the "crpp-
settings.json" file that can be found in the /home/erwink/webapps directory. The output
of a CRP consists of several parts:
1) Table overview. A file called [crp-project-name].table.json in the

/etc/project/{user}/out directory. This contains an overview of the result counts per
QC and per sub category.

2) Hits per text. Detailed hit information for each text is created in the directory
/etc/project/{user}/out/{crp-name}/hits. Hits are divided over the sub categories
and each hit contains location information as well as a possible user-defined "msg" string.
This string is the database information if the query line of the CRP is meant to produce a
database.

3) Lex results per text. Detailed information on the results of the ru:lex() function for
each text is created in the directory /etc/project/{user}/out/{crp-name}/hits in
files that end on ".lex".

4) Result database. If a result database is produced (as defined in the Constructor Editor),
then it is placed in the directory /etc/project/{user}/dbase.

User informationProject information

Definition
Editor

Query
Editor

Constructor
Editor

Result viewer

Meta Data
Editor

Definitions

Queries

Corpus
Research
Project
(.crpx)

Search service: crpp

Query
Executor

Database
Creator

Output Monitor

Results
(.xml)

Corpus
Research
Database

(.xml)

Table
Viewer

Result
Viewer

Documents
(.xml)

xml

xml

xml

xml

xml

Input
Selector

json
Status

xml

json

Database
feature editor

Result
Grouping

Standard
grouping
(.json)

Grouping
Viewer

Corpus
Viewer

Result database

Result dbase
Viewer

Result dbase
Editor

6 Erwin R. Komen

The "Project Information" component is implemented by the /crpstudio web service and
the JavaScript code. The parts of this component all work together to define a CRP. The
component logically divides into a number of different 'editors', which provide the user
interfaces to these components.

1) Meta data editor. Provides access to the 'general' part of a CRP. This contains meta

information such as author, goal and comments about the project. The general part also
allows operations on whole CRPs, such as: downloading, uploading, removal and
execution.
a) User-interface: "selector.vm", "projectmain.vm" and "prjcreate.vm" (loaded by

"projects.vm")
2) Input selector. Allow user to specify which corpus, or which part of a corpus, the queries

must be executed on.
a) User interface: "input.vm" (loaded by projects.vm).

3) Definition editor. Allow user to provide Xquery global variable and user-function
declarations.
a) User interface: "selector.vm", "definitions.vm", "defcreate.vm" (see projects.vm)

4) Query editor. Allow user to edit, upload and download queries written in Xquery.
a) User interface: "selector.vm", "queries.vm", "qrycreate.vm" (loaded by projects.vm)

5) Constructor editor. Define the execution order and hierarchy of queries. The 'query line'
selected here can be provided with result database features.
a) User interface: "selector.vm", "constructor.vm", "qccreate.vm" (see projects.vm)

6) Feature editor. Define the result database features (=fields) for the currently selected
query line in the constructor editor.
a) User interface: "selector.vm", "dbfeat.vm", "dbfcreate.vm" (loaded by projects.vm)

The 'User information' component is realized as the 'Corpora' main menu part. It allows the
user to explore the available corpora and it allows the user to define result 'groupings' for each
of them. The component divides into two parts:

1) Corpus viewer. Explore the corpora that are available to the current user. Note that users

can only view, explore and work with corpora that are not 'hidden' to them.
a) User interface for simple explorer: "crpmain.vm" (loaded by corpora.vm)
b) User interface for what could potentially serve as editor: "selector.vm", "crpedit.vm"

(see corpora.vm)
2) Result grouping. Define 'groupings': mappings between texts (file names) and the group

label they are to be part of, based on meta data information per text. The meta data is
accessable through meta variables. These variables have names that are independent of the
corpus they are used in, while their definition depends on the corpus and the project type.
This part awaits implementation.
a) User interface for groupings: selector.vm, crpgrouping.vm (see corpora.vm)
b) User interface for metavariables: selector.vm, crpmetavar.vm (see corpora.vm).

The 'Result information' component facilitates users viewing the quantitative and qualitative
results of a CRP in different ways. The component divides into several parts:

1) Table viewer. Give a tabular summary of the results or part of the results.

a) User interface: "result.vm" (loaded by projects.vm)
2) Result viewer. Provide detailed information for each hit. Either organized directly per hit,

or by-document-by-hit. Each hit gets context and syntax. The number of hits available per
'view' is adjustable.

CorpusStudio API 7

a) User interface: "result.vm" (loaded by projects.vm)
3) Grouping viewer. Quantative results of the hits in a table. Each column is one of the

groups provided by the current 'grouping', and each row is a sub categorization of the hits.
a) User interface: "result.vm" (loaded by projects.vm)

The 'Result database' component allows users to work with 'Corpus Result Databases'. These
databases can be created as a result of executing a CRP, they can be downloaded and they can
be uploaded. The component divides into several parts:

1) Result dbase viewer. Allow uploading, downloading, renaming and exploring of result

databases.
a) User interface: "selector.vm", "dbmain.vm" (loaded by dbases.vm)

2) Result dbase editor. View and edit records of the currently selected result database.
This component awaits implementation.
a) User interface: "selector.vm", "dbedit.vm" (loaded by dbases.vm)

Most of the 'editors' mentioned above make use of the 'selector.vm' template. This is a velocity
template that looks for three variables the user needs to define: $explorespec, $item_rec and
$item_list. See the template 'projects.vm' for examples.

8 Erwin R. Komen

3 Notes on the /crpstudio server component
This section contains a number of notes on selected topics implemented in the /crpstudio server.

3.1 User accounts and logging in/off

Information on the users is kept in a file called crpstudio-settings.json within the
/etc/crpstudio directory of the server implementing the /crpstudio server (see section 5.1.4).

CorpusStudio API 9

4 The /crpp web service input specification
The /crpp web service accepts POST, PUT and GET. The POST and GET methods can be used
to send data (a query) to the web service. Here is a brief overview of the commands:

command Goal
/crpchg Changes in a CRP, creation of a CRP
/crpdel Remove a CRP from the server
/crpget Download a CRP from the server (as plain text)
/crpinfo Get date information on one particular CRP: modified/changed
/crplist Get a list of CRPs for the indicated user
/crpset Upload a CRP for the indicated user
/dbinfo Provide a list of result-information from one particular database
/dblist Provide a list of databases in the storage of the indicated user
/debug Provide a message to show the JAVA service works okay
/exe Execute a CRP on a particular corpus and/or database
/export (not really used right now)
/load (not really used right now; see /crpget)
/reset Stop execution of the indicated Xq job and all underlying jobs

(doesn't work properly yet)
/save (not really used right now)
/serverinfo Show information available in crp-info.json
/settings Show links between CRP and corpus for the indicated user
/show (not really used right now)
/statusxq Provide status information on the Xq job for the indicated user
/txt One text: get sentences or details of one sentence
/txtlist Give a list of all texts for a particular lng / dir / ext
/update Give result information for a particular CRP (the 'job' is not looked for)

Important notes:
1) All commands can be issued to the /crpp web service through:

http://server-address/crpp/command?args
2) All commands normally return json, but are able to return xml if the user would like this.

In that case &outputformat=xml needs to be appended to the request.
3) The current (dec 2015) server address is:

corpus-studio-web.cttnww-meertens.vm.surfsara.nl.
This is a virtual CentOS Linux computer in the cloud, hosted by SurfSara.

4.1 Unified response structure
The commands issued to /crpp have a unified response structure consisting of three parts:
"indexName", "contents" and "status".

{ "indexName": "serverinfo",
 "contents": {… },
 "status": {
 "code": "completed",
 "message": "Some kind of message",
 "userid": "tomcat"
 }
}

The "indexName" part copies the name of the index that has been called (the specific /crpp
command). The "contents" part differs per command. The "status" part at the very least contains

10 Erwin R. Komen

a "code", and this 'code' can only have a limited number of values: "completed", "working" or
"error". If there is an error, then the status contains the 'error' value for 'code', and a message
may be available in the 'content' part, e.g:

{ "content": {
 "code": "INTERNAL_ERROR",
 "message": "RequestHandler is empty. Use: /execute, /show, /statusxq"
 },
 "status": {"code": "error"}
}

4.2 Issuing “crpchg”

The query command /crpchg, like all other commands, takes a json datastructure as argument.
The datastructure may be of two types: defining one key/id/value change, or a list of changes.
Here is an example of one change:

 /crpchg?{ "userid":"erkomen",
 "crp": "ParticleA.crpx",
 "key": "Goal",
 "id": -1,
 "value": "This CRP serves as an example" }

The change is for the CRP called ParticleA.crpx belonging to "erkomen". It involves the field
"Goal" of the CRP as a whole (hence the -1 id), and the "value" part gives the new definition
of the Goal.
Here is an example of a list of changes:
 /crpchg?{ "crp":"tstSonar",
 "list":"eJy...",
 "userid":"erwin"}

The "list" component is compressed and then Base64 encoded (with slightly adapted non-alpha
symbols). Un-escaping the list shows:
 [{"id":3, "value":"","key":"query.create"},
 {"id":3, "value":"matObj","key":"query.Name"},
 {"id":3, "value":"Find main clauses with an object","key":"query.Goal"},
 {"id":3, "value":"Find main clauses with at least one object on the clause

level","key":"query.Comment"},
 {"id":3, "value":"<FoLiA>{\n (: Loop through the elements of each text :)\n for

$search in //su[ru:matches(@class,'undefined')]\n \n (: Retrieve possible
subject :)\n let $sbj := $search/child::su[ru:matches(@class,'undefined')]\n
\n (: subject must exist :)\n where (\n exists($sbj)\n)\n \n (: Return
results :)\n return ru:back($search)\n}<\/FoLiA>","key":"query.Text"},

 {"id":3, "value":"","key":"constructor.create"},
 {"id":3, "value":"2/out","key":"constructor.Input"},
 {"id":3, "value":"matObj","key":"constructor.Query"},
 {"id":3, "value":"3_matObj","key":"constructor.Output"},
 {"id":3, "value":"matObj","key":"constructor.Result"},
 {"id":3, "value":"False","key":"constructor.Cmp"},
 {"id":3, "value":"False","key":"constructor.Mother"},
 {"id":3, "value":"Find main clauses with an object","key":"constructor.Goal"},
 {"id":3, "value":"Find main clauses with at least one object on the clause

level","key":"constructor.Comment"}]

What is shown here is the definition of a new query in a Folia-xml project. The first change in
the list is not a change at all, but the key "query.create" indicates that it involves the creation
of a new query with default values. All the changes belong to the CRP with CrpId equal to "3"
(the name of the CRP has been defined in the "crp" parameter outside of the list).
The first part of the list, then, involves the definition of a new "query" (its Name, Goal and
Text), while the second part specifies that this query should also be taken up in the
"constructor".

CorpusStudio API 11

Any /crpchg command that leads to changes in the CRP leads to follow-up actions: (a) the
general section of the CRP gets an adapted date-stamp, (b) the changed CRP is saved on the
/crpp server, and (c) the /crpstudio issues a command to get the changed CRP into its local
storage.

4.3 Issuing “crpdel”

The command /crpdel requires specification of the item to be deleted. What needs to be
specified is the name of the CRP and the userid. Optional specifications are "itemid", "itemtype"
and "itemmain". These parameters are not used for the deletion process.

 /crpdel?{ "crp": "VladimirVelikij",
 "itemid": "2",
 "itemtype": "project",
 "itemmain": "ROOT",
 "userid": "erwin" }

Successful deletion of a CRP leads to a confirmational response, which repeats the name of the
CRP as well as the location from where it was deleted on the server:

{ "indexName": "crpdel",
 "content": {
 "file": "/etc/project/erwin/SbjProperties_V9.crpx",
 "name": "SbjProperties_V9.crpx"
 },
 "status": {
 "code": "completed",
 "message": "See the [crp] in the [content] section",
 "userid": "tomcat"
 }
}

4.4 Issuing “crpget”

The command /crpget only takes the userid and the name of the CRP as arguments (and the
CRP name may be with or without the ending .crpx):

 /crpget?{ "userid":"erkomen",
 "name": "ParticleA.crpx"}

The whole CRP is returned in a "crp" part of the "content":

{ "indexName": "crpget",
 "content": {
 "crp": "<?xml ...\n</CorpusResearchProject>"
 },
 "status": {
 "code": "completed",
 "message": "See the [crp] in the [content] section",
 "userid": "tomcat"
 }
}

4.5 Issuing “crpinfo”

The command /crpinfo is a way to request date/time information on a particular CRP. It takes
three arguments: the "userid", the name of the "crp" and the kind of date required: either
"modified" or "dateChanged" (but the outcome should be the same). Here is an example:

 /crpget?{ "userid":"erkomen",
 "crp": "txtSonar.crpx",
 "info": "modified"}

12 Erwin R. Komen

The requested date/time information is returned in the "content" part:

{ "indexName": "crpinfo",
 "content": {
 "modified": "2015-12-28T17:12:35"
 },
 "status": {
 "code": "completed",
 "message": "See the information in the [content] section",
 "userid": "tomcat"
 }
}

4.6 Issuing “crplist”

The command /crplist returns a list of the CRPs for one particular user (if the "userid" is
specified) or for all users (if an empty parameter is provided). The command
/crplist?{"userid": "guest"}, for instance, returns:

{ "indexName": "crplist",
 "content": [
 { "CrpId": 2,
 "userid": "guest",
 "crp": "ChechenMarkerA.crpx",
 "loaded": false,
 "size": 126060,
 "file": "/etc/project/guest/ChechenMarkerA.crpx",
 "lng": "che_lat",
 "dir": "NPCMC"
 },
 { "CrpId": 3,
 "userid": "guest",
 "crp": "DutchIOstart.crpx",
 "loaded": false,
 "size": 4044,
 "file": "/etc/project/guest/DutchIOstart.crpx",
 "lng": "nld",
 "dir": "WR-P-P-K_reports"
 },
 { "CrpId": 1,
 "userid": "guest",
 "crp": "LakProDem.crpx",
 "loaded": false,
 "size": 30699,
 "file": "/etc/project/guest/LakProDem.crpx",
 "lng": "lak_cyr",
 "dir": "PCMLBE"
 },
 { "CrpId": 4,
 "userid": "guest",
 "crp": "Possessives.crpx",
 "loaded": false,
 "size": 167044,
 "file": "/etc/project/guest/Possessives.crpx",
 "lng": "che_lat",
 "dir": "NPCMC"
 }
],
 "status": {
 "code": "completed",
 "message": "See the list of CRPs in the [content] section",
 "userid": "tomcat"
 }
}

CorpusStudio API 13

The CRPs are automatically numbered by /crpp, but the numbers may differ as soon as more
CRPs are added. Each CRP has some additional information, like its size (in number of bytes)
and whether it has been loaded into the CrpManager.

4.7 Issuing “crpset”

The /crpset serves for uploading a CRP to the server. Required parameters are the userid, the
name of the CRP, the text of the CRP (compressed and in Base64) and the 'overwrite' parameter.
Issuing the command looks like this:

 /crpset?{ "userid":"erwin",
 "crp": "eJzVvW2THMdxLvrZitB/mIPrEABeAdv1X",
 "name": "Dutch-ditransitives",
 "overwrite": "true" }

The overwrite parameter resolves the case where a CRP with the indicated name already exists.
What the /crpset command returns in the "content" part is the "name" of the CRP:

{ "indexName": "crpset",

 "content": {
 "name": " Dutch-ditransitives"
 },

 "status": {
 "code": "completed",
 "message": "The crp has been stored at the server",
 "userid": "tomcat"
 }
}

4.8 Issuing “dbinfo”
This command provides detailed information about a list of results stored in a result database
(detailed information on just one result is fetched through /update – see section 4.21). The
kind of information to be provided depends on the parameters being passed on. The general
layout of the command is:

 /dbinfo?{ "userid":"erwin",
 "name": "omdat_only_QC1_Dbase",
 "start": 0,
 "count": 10 }

Note that ‘start’ is zero-based, even though the result number (id) starts with “1”. The parameter
‘count’ may be 0, in which case no information but the size of the database is returned.
What is returned has the following format:
{ "indexName": "dbinfo",
 "content": {
 "General": {
 "ProjectName": "omdat_only",
 "Created": "2017-10-24T08:50:24",
 "Language": "nld", "Part": "LassyKlein",
 "Notes": "Created by CorpusStudio (web) from query line 1: [standard]",
 "Analysis": "searchWord;searchPOS",
 "QC": 1,
 "Features": ["ft_searchWord", "ft_searchPOS"]
 },
 "Count": 1, "Size": 5380,
 "Results": [
 { "ResId": 1,
 "File": "dpc-bmm-001072-nl-sen.folia.xml",
 "TextId": "dpc-bmm-001072-nl-sen",
 "Search": "dpc-bmm-001072-nl-sen.d.1.p.1.s.13",
 "Cat": "doordat_groep",

14 Erwin R. Komen

 "Locs": "dpc-bmm-001072-nl-sen.d.1.p.1.s.13",
 "Locw": "dpc-bmm-001072-nl-sen.d.1.p.1.s.13.su.20",
 "Notes": "-", "SubType": "", "Text": "",
 "Psd": "", "Pde": "",
 "Features": [{ "ft_searchWord": "door" },
 { "ft_searchPOS": "VZ" }
]
 }
],
 "Features": ["ft_searchWord", "ft_searchPOS"]
 },
 "status": {
 "code": "completed",
 "message": "See the information in the [content] section",
 "userid": "tomcat"
 }
}

4.9 Issuing “dblist”
It is possible to get a list of all the databases available to one user by issuing a
/dblist{"userid": "name_of_user"} command. The return looks like this:

{ "indexName": "dblist",
 "content": [
 { "userid": "guest",
 "dbase": "ChechenMarkerA_QC1_Dbase.xml",
 "file": "/etc/project/guest/dbase/ChechenMarkerA_QC1_Dbase.xml",
 "lng": "che_lat",
 "dir": "NPCMC"
 },
 { "userid": "guest",
 "dbase": "tstSonar_QC2_Dbase.xml",
 "file": "/etc/project/guest/dbase/tstSonar_QC2_Dbase.xml",
 "lng": "nld",
 "dir": "WR-P-P-K_reports"
 }
],
 "status": {
 "code": "completed",
 "message": "See the list of data bases in the [content] section",
 "userid": "tomcat"
 }
}

Note that the contents is a JSONArray of structures that provide the database short name, its
path and the language/corpus input on which it was executed.

4.10 Issuing “dbset”
This command is used to upload a result database to the /crpp server. The database that is being
uploaded must be in the xml format of result databases. The /dbset command has the following
structure:
 /dbset? {"userid": "erwin",
 "name": "ParticleA_Dbase.xml",
 "db": "<Result>…</Result>",
 "lng": "nld",
 "dir": "ParsedSonar",
 "overwrite": true}

Note that the “lng” and “dir” parameters are optional; they can be left out completely. The
database itself (the argument of “db”) must be provided in the CorpusStudio-standard
compressed format (gzipped, then base64 with the plus replaced by a tilde).
The result upon success:

CorpusStudio API 15

TODO – result example

4.11 Issuing “dbupload”

The /dbupload command is used to upload a databased divided into chunks to the /crpp server.
This command is mainly used by the /crpstudio server. A number of actions can be triggered
by specifying the ‘action’ parameter of the command. The general layout of the command is
this:
 /dbupload? {"userid": "erwin",
 "name": "ParticleA_Dbase",
 "action": "init",
 "chunk": 20,
 "total": 100,
 "overwrite": true}

The ‘chunk’ paramater provides the number of this chunk, and the ‘total’ – the total number
of chunks to be expected. The arguments that should be provided depend on the action:

action arguments needed
init userid, name, total
stop userid, name, total
send userid, name, total, chunk, start

TODO – result example

4.12 Issuing “debug”

The /debug command does not expect any parameters and its return should look like this:
{ "indexName": "debug",
 "status": {
 "code": "completed",
 "message": "The Java-part of the CRPP service works fine.",
 "userid": "tomcat"
 }
}

Note that this is the only command whose return misses a "content" part.

4.13 Issuing “exe”

The /exe command takes four obligatory parameters in the JSON object: "crp", "userid", "lng"
and "dir":
 /exe? {"lng": "nld",
 "dir": "WR-P-E-C_e-magazines",
 "crp": "tstSonar.crpx",
 "options": {},
 "userid": "erwin",
 "cache": false}

The argument "cache" is optional. It specifies whether to use any previous results in cache
('true') or not ('false'). There also is the optional argument “options”. This is a JSON object that
can contain a limited (but expanding) number of options that need to be taken into account
while executing a research project. Future options will include the possibility to select on the
basis of metadata. Right now the following options are recognized:

option description
search_type Can be: ‘all’, ‘first’ or ‘random’
search_count the number of texts that are researched when search_type

is ‘first’ or ‘random’

16 Erwin R. Komen

What the initial call to /statusxq returns is a single status block without a content part:
{ "status": {
 "code": "started",
 "message": "Searching, please wait...",
 "userid": "erwin",
 "jobid": "1",
 "checkAgainMs": 200
 }
}

The information provided is valuable: the code "started" indicates that the search job has been
accepted, and the "jobid" value of '1' tells the user which jobid needs to be used for subsequent
status requests.

4.14 Issuing “reset”

Stopping a job that has been started can be done by issuing a /reset command that takes just
two arguments: the userid and the jobid. This jobid can be gleaned from the initial response
on the /exe command. Here is an example of a status request:

 /reset?{ "userid":"erwin",
 "jobid": "165"}

The json fields are “userid” and “jobid”. The “userid” must be the same one as has been
used to issue the /exe command. The “jobid” field must contain the string value (a number
between quotation marks) of the jobid that has been received from the first reply on the /exe
command.

The "content" part that is returned from a /reset job contains two elements: "action", which
should have the value "aborted", and "finished", which receives the internal boolean value
of the job's finish status, so must ideally be 'true'.

4.15 Issuing “serverinfo”

The /serverinfo command takes no arguments at all. What gets returned is a list of available
languages as well as the contents of the crp-info.json file (as a string):

{"indexName": "serverinfo",
 "contents":{
 "indices":["eng_hist","lak_cyr","eng_sla","nld","che_lat"],
 "corpora": "{...}"},
"status": {
 "code":"completed",
 "message":"See the 'indices' information in @indices and the 'corpora'

information in @corpora",
 "userid":"tomcat"}
}

4.16 Issuing “settings”

The /settings command only takes a "userid" argument:

 /settings?{ "userid":"erkomen"}

What is returned is a list of links:
{ "indexName": "settings",
 "content": {
 "links": [
 { "crp": "ChechenMarkerA.crpx", "lng": "che_lat", "dir": "NPCMC" },
 { "crp": "LakProDem.crpx", "lng": "lak_cyr", "dir": "PCMLBE" }
],
 "userid": "guest",
 "recent": "V2_MEdbCollect_versie8.crpx"
 },

CorpusStudio API 17

 "status": {
 "code": "completed",
 "message": "See the settings object in the [content] section",
 "userid": "guest"
 }
}

The /settings command also returns the name of the CRP that has been executed last in the
"recent" parameter.

4.17 Issuing “statusxq”

Requesting the progress of an /exe command is done by issuing a /statusxq command that
takes just two arguments: the userid and the jobid. This jobid can be gleaned from the initial
response on the /exe command. Here is an example of a status request:

 /statusxq?{ "userid":"erwin",
 "jobid": "165"}

The json fields are “userid” and “jobid”. The “userid” must be the same one as has been
used to issue the /exe command. The “jobid” field must contain the string value (a number
between quotation marks) of the jobid that has been received from the first reply on the /exe
command. This first reply contains the status “started”, and it is only this reply that returns
the correct jobid value.

What the /statusxq returns depends on the progress that is being made. Halfway through the
process one might get the following update:

{ "indexName": "statusxq",
 "content": {
 "jobid": "165",
 "start": "WR-P-P-K-0000000073.folia",
 "finish": "WR-P-P-K-0000000065.folia.xml",
 "count": 62,
 "total": 81,
 "ready": 44
 },
 "status": {
 "code": "working",
 "message": "please wait",
 "userid": "erwin"
 }
}

The parameters that are returned in the "content" part are the following:
start The last text that has been sent as execution job
finish The most recent text that has completed execution
count The number of texts sent in for execution
total The total number of texts that need to be executed
ready The number of texts that have returned from execution

At the end of the execution the /statusxq command does not only return the status
"completed", but it also contains a table with a summary of the results found:

{ "indexName": "statusxq",
 "content": {
 "jobid": "165",
 "searchParam": { "resultsType": "json",
 "tmpdir": "/var/cache/tomcat/temp",
 "waitfortotal": "no"
 },
 "searchTime": 7478, "searchDone": true,

18 Erwin R. Komen

 "query":
"{\"crp\":\"ChechenMarkerA.crpx\",\"lng\":\"che_lat\",\"save\":\"2015-12-10
v13:13:50\",\"dbase\":\"\",\"dir\":\"NPCMC\",\"userid\":\"guest\"}",

 "taskid": 2,
 "table": [
 { "qc": 1,
 "result": "anyParticleA",
 "subcats": [],
 "counts": [],
 "total": 508,
 "hits": [
 { "file": "Arsanukaev1-2013.psdx", "message": [], "count": 106,
 "subs": [] },
 { "file": "Arsanukaev2-2013.psdx", "message": [], "count": 0,
 "subs": [] }
]
 }
],
 "total": 71
 },
 "status": {
 "code": "completed",
 "message": "The search has finished",
 "userid": "erwin"
 }
}

4.18 Issuing “statusxl”

Requesting the progress of an /txtlist command is done by issuing a /statusxl command
that takes just two arguments: the userid and the jobid. This jobid can be gleaned from the
initial response on the /txtlist command. Here is an example of a status request:
TODO: example

4.19 Issuing “txt”

The /txt command serves two purposes, both related to a text that has been specified in terms
of (a) language, (b) directory, (c) encoding type (either ‘folia’ or ‘psdx’) and (d) text name.
When the ‘type’ argument is set to ‘sentences’, a list of all the sentences in the text will be
supplied. Other types are: "grouping", "hits", "context", "msg", "syntax", "svg", and these
types are completely the same as those used for the /update command (see there for an
explanation of them).

4.20 Issuing “txtlist”

The /txtlist command can be used to get a list of available texts, but there are a number of
obligatory parameters: (a) the language of the texts, (b) the sub-directory in which to search,
and (c) the the encoding type of the texts (either ‘folia’ or ‘psdx’).

The ‘content’ part of the txtlist command contains a parameter ‘jobid’ that can be used
to probe the status of the txtlist.

4.21 Issuing “update”

The /update command is used to download results from a job that has been executed. The
output of the job is stored on the server and it is this stored output that is fetched by the /update
command. Here is a request for some information:

 /update?{ "crp":"V2_test_versie11",
 "sub":"1:[iSbj-iVf]",
 "qc":2,

CorpusStudio API 19

 "lng":"eng_hist",
 "start":1,
 "count":10,
 "files":[],
 "type":"context_syntax",
 "dir":"ME",
 "userid":"erwin"}

The obligatory parts of the /update command are:
userid - name of the user
crp - name of the CRP
lng - language on which the CRP has been executed
start - index of the first hit to be fetched
count - number of hits to be fetched
qc - the constructor line (from the constructor editor) for which we want information
type - the required info type: 'hits', 'context', 'msg', 'syntax'
 or a combination separated by an underscore '_'

Then there are some optional parameters:
dir - part of the corpus on which the CRP has been executed
sub - the sub category to which the results need to be confined
files - an array of files to which the results must be confined
div - the Xquery code that must be used to map each text to a group label

What the /update returns depends on the type of information that has been requested. Usually
the "content" part of the response consists of an array of results.

{ "indexName": "update",
 "content": [
 { "n": 1,
 "file": "WR-P-P-K-0000000001.folia.xml",
 "locs": "WR-P-P-K-0000000001.head.1.s.2",
 "locw": "WR-P-P-K-0000000001.head.1.s.2.su.1",
 "preC": "[WR-P-P-K-0000000001.head.1.s.1] Energiebesparende maatregelen in

de woningvoorraad [WR-P-P-K-0000000001.head.1.s.2] ",
 "hitC": "KWR 2000 maakt balans op",
 "folC": " [WR-P-P-K-0000000001.head.2.s.1] Voorwoord",
 "allS": {
 "main": "SMAIN",
 "children": [
 { "pos": "MWU-SU", "txt": "KWR 2000" },
 { "pos": "WW", "txt": "maakt" },
 { "pos": "N-OBJ1", "txt": "balans" },
 { "pos": "VZ-SVP", "txt": "op" }
]
 },
 "hitS": {
 "main": "SMAIN",
 "children": [
 { "pos": "MWU-SU", "txt": "KWR 2000" },
 { "pos": "WW", "txt": "maakt" },
 { "pos": "N-OBJ1", "txt": "balans" },
 { "pos": "VZ-SVP", "txt": "op" }
]
 }
 },
 {
 "n": 2,
 "file": "WR-P-P-K-0000000001.folia.xml",
 "locs": "WR-P-P-K-0000000001.p.1.s.1",
 "locw": "WR-P-P-K-0000000001.p.1.s.1.su.1",
 "msg": "part of me",

20 Erwin R. Komen

 "preC": "[WR-P-P-K-0000000001.head.1.s.2] KWR 2000 maakt balans op[WR-P-P-
K-0000000001.head.2.s.1] Voorwoord [WR-P-P-K-0000000001.p.1.s.1]
Nederlandse",

 "hitC": "De isolatiegraad van de gemiddelde Nederlandse woning nam in vijf
jaar met tien procent toe .",

 "folC": " [WR-P-P-K-0000000001.p.1.s.2] Het aantal hoogrendementsketels
verdubbelde in dezelfde tijd.",

 "allS": {
 "main": "SMAIN",
 "children": [
 { "pos": "NP-SU",
 "txt": "De isolatiegraad van de gemiddelde Nederlandse woning"
 },
 { "pos": "WW", "txt": "nam" },
 { "pos": "PP-MOD", "txt": "in vijf jaar" },
 { "pos": "PP-MOD", "txt": "met tien procent" },
 { "pos": "VZ-SVP", "txt": "toe" },
 { "pos": ".", "txt": "" }
]
 },
 "hitS": {
 "main": "SMAIN",
 "children": [
 { "pos": "NP-SU",
 "txt": "De isolatiegraad van de gemiddelde Nederlandse woning"
 },
 { "pos": "WW", "txt": "nam" },
 { "pos": "PP-MOD", "txt": "in vijf jaar" },
 { "pos": "PP-MOD", "txt": "met tien procent" },
 { "pos": "VZ-SVP", "txt": "toe" },
 { "pos": ".", "txt": "" }
]
 }
 }
],
 "status": {
 "code": "completed",
 "message": "See the information in the [content] section",
 "userid": "tomcat"
 }
}

Each result element has a number 'n', and contains information that localizes the place where
the result comes from: the name of the text 'file', the sentence id within the file 'locs' and
the constituent id within the sentence 'locw'.

Next comes the context information, divided into 'preC' (preceding context), 'hitC' (the part
of the hit) and 'folC' (following context). The example above also contains syntax information
in the form of 'allS' (syntax of the whole clause) and 'hitS' (syntax of the constituent that
was returned by the query). The example above has the allS and hitS equal.
The results for 'grouping' have not been determined yet.

CorpusStudio API 21

5 Web service maintenance

5.1 Adapt CorpusStudio for use with other corpora
Adapting the CorpusStudio web application for one’s own corpora is possible, provided the
application is run from one’s own Linux server.

5.1.1 Requirements

• Server. Linux server. The program has been developed under CentOS, but it should be
possible to use other Linux versions.

• Space. The server should have enough space to hold one’s corpora as well as CorpusStudio
and the engine it runs on (Java + Tomcat). The program uses space on the hard drive under
the /etc/project directory as well as under its deployment directory.

• Memory. The amount of RAM memory needed is roughly 1 Gbyte per processor plus
perhaps 20 Gbyte to start with. The amount can be determined experimentally by creating
a CRP that searches through the maximum number of input files (it’s the number of files
that counts, not so much their size), and then watching the amount of ‘free memory left’ in
the cataline log file. E.g: sudo tail -n 400 /usr/share/tomcat/logs/catalina.out | grep
"Free m". Note: changes in the amount of memory that is available do not automatically
become ‘known’ to Tomcat. The amount of memory that should be used by Tomcat must
be specified by adding or adapting the JAVA_OPTS line in the tomcat.conf file. The
CentOS server CLARIN’s application has been built on has this file in the
/usr/share/tomcat/conf/ directory.

• Processor. The speed at which the web application will search through texts increases as
more processing cores are available. But note that each processing core also increases the
amount of RAM memory needed. Something like 8-20 cores should get a nice speed.

• Software. Java (version 1.7 or higher) and tomcat (version 7 or higher) should be installed
on the server.

5.1.2 Installation
The installation of the CorpusStudio web application is Linux-system (and version) dependent.
A virtual machine that has a CentOS system containing no installation of Java would require
the following commands to prepare the machine for CorpusStudio:

Arrange for sudo access
- Add a user account for the person in charge (e.g “crphome”)
- Log in as root: su
- Edit the /etc/sudoers file:
add a line for ‘crphome’ that has the same priorities as ‘root’
Changes to the principal’s user account: get a directory ‘webapps’
cd ~
mkdir webapps

Update to latest installations
sudo yum update
Install epel-release
sudo yum install –y epel-release
Manual tweaking of epel-release:
sudo wget http://dl.iuscommunity.org/pub/ius/stable/RedHat/6/x86_64/ius-release-

1.0-13.ius.el6.noarch.rpm
sudo rpm -Uvh ius-release*.rpm
Install Java

22 Erwin R. Komen

sudo yum install –y java
Install tomcat
sudo yum install –y tomcat
Check the correct paths for Java, and create (or adapt) the file .bash_profile in

the directory /home/crpstudio:
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi
User specific environment and startup programs
PATH=$PATH:$HOME/bin:/usr/share/alpino/bin
JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/jre
JRE_HOME=$JAVA_HOME
PATH=$JAVA_HOME/bin:$PATH:$HOME/bin
CATALINA_HOME=/usr/share/tomcat
Make the variables available
export JAVA_HOME
export JRE_HOME
export PATH

Adapt the file “ajp.conf” in directory /etc/httpd/conf.d so that it contains the
lines with “crpp” and “crpstudio”:
ProxyRequests Off
<Proxy *>
 Order deny,allow
 Deny from none
 Allow from localhost
</Proxy>
ProxyPass /crpp ajp://localhost:8009/crpp
ProxyPassReverse /crpp ajp://localhost:8009/crpp
ProxyPass /crpstudio ajp://localhost:8009/crpstudio
ProxyPassReverse /crpstudio ajp://localhost:8009/crpstudio

Go to directory /usr/share/tomcat/conf/Catalina
cd /usr/share/tomcat/conf/Catalina
Create a file crpp.xml

<?xml version='1.0' encoding='utf-8'?>
<Context docBase="/home/crphome/webapps/CrppS" path="/crpp" reloadable="true"

/>
Create a file crpstudio.xml

<?xml version='1.0' encoding='utf-8'?>
<Context antiJARLocking="true" docBase="/home/crphome/webapps/CrpStudio"

path="/crpstudio" reloadable="true" />
Adapt the existing file server.xml in directory /usr/share/tomcat/conf, adding a

‘localhost2’ section after the existing ‘localhost’ one (depending on the main
user’s home directory; this makes sure the *.war files in the user’s webapps
directory are unpacked properly):

 <Host name="localhost2" appBase="/home/crphome/webapps"
 unpackWARs="true" autoDeploy="true">
 <!-- SingleSignOn valve, share authentication between web applications
 Documentation at: /docs/config/valve.html -->
 <!--
 <Valve className="org.apache.catalina.authenticator.SingleSignOn" />
 -->
 <!-- Access log processes all example.
 Documentation at: /docs/config/valve.html
 Note: The pattern used is equivalent to using pattern="common" -->
 <Valve className="org.apache.catalina.valves.AccessLogValve"

directory="logs"
 prefix="nederlab_access_log." suffix=".txt"
 pattern="%h %l %u %t "%r" %s %b" />
 </Host>
Adapt the lines for JAVA_HOME and JAVA_OPTS in the file tomcat.conf that resides

in directory /usr/share/tomcat/conf (this says Java uses 45 Gbytes maximum and
1Gbytes minimum):
Where your java installation lives
JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/jre"
You can pass some parameters to java here if you wish to
JAVA_OPTS="-Xmx45G -Xms1G"

CorpusStudio API 23

add user crphome to the ‘tomcat’ group
sudo usermod –a –G tomcat crphome

log off and log in again as crphome to let the changes become effective

Create a directory structure that at least contains:
/etc/corpora - this must contain file crp-info.json
/etc/project - this must contain a directory for each user
Crpstudio will create a settings.json file
inside each user’s directory
/etc/crpstudio - this must contain a directory for each user
it must also contain crpstudio-settings.json

Make sure the directories created are owned by tomcat:tomcat

Make sure the crp-info.json file is adapted to one’s use and is validated

5.1.3 File crp-info.json
The file ‘crp-info.json’ must reside in the server’s /etc/corpora directory. Here is a sample of
its possible contents. It contains a definition for one corpus (the Lak language) and all its
associated information.
{ "corpora": [
 {"lng": "lak_cyr", "name": "Lak (lbe), Cyrillic orthography", "eth": "lbe",
 "metavar": "caucasian",
 "parts": [
 {"name": "PCMLBE", "dir": "PCMLBE", "descr": "Parsed Corpus of Modern Lak",
 "metavar": "caucasian", "psdx": "", "folia": "",
 "url": "http://erwinkomen.ruhosting.nl/lbe/crp/"}

]}
],
 "metavar": [
 {"name": "caucasian",
 "variables": [
 {"name": "author", "descr": "Author", "type": "txt",

"loc": "header", "value": "descendant::titleStmt/@author"},
 {"name": "date", "descr": "Estimated manuscript date", "type": "int",

"loc": "header", "value": "descendant::creation/@manuscript"},
 {"name": "editor", "descr": "Editor", "type": "txt",

"loc": "header", "value": "descendant::titleStmt/@editor"},
 {"name": "genre", "descr": "Type of text", "type": "txt",

"loc": "header", "value": "descendant::creation/@genre"},
 {"name": "subtype", "descr": "Time/genre/translated combi", "type": "txt",

"loc": "header", "value": "descendant::creation/@subtype"},
 {"name": "title", "descr": "Title of document", "type": "txt",

"loc": "header", "value": "descendant::titleStmt/@title"},
 {"name": "translated","descr": "Is this translated?", "type": "txt",

"loc": "header", "value": "if (ends-
with(descendant::creation/@subtype, 't')) then 'true' else 'false'"}

],
 "tagset": [
 {"title": "clsAny", "def": "IP*"},
 {"title": "clsMain","def": "IP-MAT*"},
 {"title": "clsSub", "def": "IP-SUB*"},
 {"title": "clsInf", "def": "IP-INF*"},
 {"title": "npSbj", "def": "NP-SBJ*"},
 {"title": "npObj", "def": "NP-OB*"},
 {"title": "npAny", "def": "NP|NP-*"},
 {"title": "ppAny", "def": "PP|PP-*"},
 {"title": "vbAny", "def": "V*|AX*"},
 {"title": "vbFin", "def": "VB[PD]*|AX*"}
],
 "groupings": [
 {"name": "subtype", "descr": "Combination of time and translated",

"value": "$subtype"},

24 Erwin R. Komen

 {"name": "titleAlphabet", "descr": "First letter of title",
"value": "if ($title = '') then '(n.t.)' else substring($title, 0,
1)"},

 {"name": "authorAlphabet", "descr": "First letter of author surname",
"value": "if ($author = '') then '(n.a.)' else substring($author, 0,
1)"},

 {"name": "date", "descr": "Year of manuscript",
"value": "$date"}

]
 }
]
}

The essential sections from the crp-info.json file:
• corpora. This defines key ingredients used by CorpusStudio:

o lng the language code. This must coincide with a directory name:
/etc/corpora/lak_cyr

o metavar the name of the set of variables used for input restriction and grouping
o parts one or more parts of the corpus, as identifiable by the sub directory (the

attribute ‘dir’) within the corpus directory. Here:
/etc/corpora/lak_cyr/PCMLBE

• metavar. This provides common variable names and their Xquery definitions.
o name The name of this section. It must correspond with the value of the ‘metavar’

attribute in the ‘corpora’ section.
o variables A list of all the variables that can be used in the definition of input

restrictions as well as groupings. It is the variable names defined here that occur in
the selection box for the input restriction definition of the Projects/Input page of
CorpusStudio. Only the variables that are defined here may occur later in the
‘groupings’ section.

o tagset This is, in the current version of CorpusStudio, a fixed list of names and the
labels (POS or class tags) that are to be associated with them. The labels are
generally defined by a ‘def’ specifiction. Where such a specification is not enough,
a ‘fs’ specification may specify the name and the value of a feature. The ‘vbFin’
definition for ‘sonar’ files, for instance, is defined as:
{"title": "vbFin", "def": "WW*", "fs": [{"alp/wvorm": "pv"}]}

o groupings The idea of result-groupings is in the process of being coded in
CorpusStudio. The indicated section is a sample of the standard groupings every
‘metavar’ section must provide. The ‘value’ part of each grouping is an Xquery
expression that results into a string label that identifies the ‘result group’ one
particular file belongs to.

5.1.4 File crpstudio-settings.json
The directory /etc/crpstudio must contain a file named crpstudio-settings.json with the
user/password information for the users that are allowed to make use of the version of
CorpusStudio being used.

{ "users": [
 {"name": "erwin", "password": "xx", "admin": true, "include": []},
 {"name": "erkomen", "password": "xx", "admin": false, "include": []},
 {"name": "guest", "password": "xx", "admin": false, "include": []}
]
}

5.1.5 File crpp-settings.json
The /crpp ‘machine’ is the query-crunching motor serving the CorpusStudio web application.
Its parameters are specified by the file crpp-settings.json that should be located in the main

CorpusStudio API 25

user’s webapps directory (that would be /home/crphome/webapps in the running example). The
format and contents of this settings file have been borrowed from the BlackLab code.1 Here is
a sample of its contents.
{ // Corpus Research Project Processor config file
 // ===
 // A list of IPs that will run in debug mode.
 "debugModeIps": [
 "127.0.0.1", // IPv4 localhost
 "0:0:0:0:0:0:0:1" // IPv6 localhost
],

 // Specify the maximum number of "XqF" jobs allowed
 "maxparjobs": 18,

 // List of important directories
 "projectBase": "/etc/project",
 "corpusBase": "/etc/corpora",

 // A list of possible Engines, with the default engine identified
 "pinfo": {
 "ProjectType": "Xquery-psdx",
 "Xquery-psdx": {
 // Description
 "Descr": "Xquery with XML output",
 // Extension of query files
 "Qext": ".xq",
 // Extension of definition files
 "Dext": ".xq",
 // Extension of source files
 "SrcExt": ".psdx",
 // Start and end of comments
 "ComBeg": "(:", "ComEnd": ":)",
 // The 'engine' that is being used
 "Engine": "Xquery",
 // Default definition and period file locations
 "DefaultDefFile": "",
 "DefaultPerFile": "",
 // Text of default query
 "DefaultQuery": [
 "<TEI>",
 "{",
 " for $search in //eTree[ru:matches(@Label, $_matrixIP)]",
 "",
 " (: Use your own 'let' definitions here :)",
 " let $sbj := tb:SomeChildNo($search, $_subject, $_nosubject)",
 "",
 " (: Define your 'where' definition here :)",
 " where (exists($sbj)",
 ")",
 " return ru:back($search)",
 "}",
 "</TEI>"]
 },
 "FoLiA-xml": {
 // Description
 "Descr": "Xquery with XML output",
 // Extension of query files
 "Qext": ".xq",
 // Extension of definition files
 "Dext": ".xq",
 // Extension of source files
 "SrcExt": ".folia.xml",
 // Start and end of comments
 "ComBeg": "(:", "ComEnd": ":)",
 // The 'engine' that is being used

1 Blacklab is a program written by INL. See: https://github.com/INL/BlackLab.

https://github.com/INL/BlackLab

26 Erwin R. Komen

 "Engine": "Xquery",
 // Default definition and period file locations
 "DefaultDefFile": "",
 "DefaultPerFile": "",
 // Text of default query
 "DefaultQuery": [
 "<FoLiA>",
 "{",
 " (: Look for all main clauses within this sentence :)",
 " for $search in //su[ru:matches(@cat, 'smain')]",
 "",
 " (: Get the subject of this particular main clause :)",
 " let $sbj := $search/child::su[@rel='su']",
 "",
 " (: Do not allow empty (elided) subjects :)",
 " where (",
 " exists($sbj) and (count($sbj/child::su)>0)",
 ")",
 " (: Return the main clause :) ",
 " return ru:back($search)",
 "}",
 "</FoLiA>"]
 }
 },
 // The location and parameters for each language-corpus index
 // ---
 // (missing indices will be skipped)
 "indices": {
 "lak_cyr": {
 "dir": "/etc/corpora/lak_cyr",
 "mayViewContent": true
 }
 },
 // Settings related to tuning server load and client responsiveness
 // ---
 "performance": {

 // Settings for job caching.
 "cache": {
 // How many search jobs will we cache at most?
 "maxNumberOfJobs": 200,

 // After how much seconds will a search job be removed from the cache?
 "maxJobAgeSec": 3600,

 // How many MB free memory the cache should aim for while cleaning up.
 "targetFreeMemMegs": 500,

 // When there's less free memory available than targetFreeMemMegs,
 // each time a job is created and added to the cache,
 // get rid of this number of older jobs in order
 // to free up memory
 "numberOfJobsToPurgeWhenBelowTargetMem": 2
 },

 // The minimum amount of free memory required to start a new search job.
 "minFreeMemForSearchMegs": 100,

 // The maximum number of jobs a user is allowed
 // to have running at the same time.
 "maxRunningJobsPerUser": 100
 }
 }}

CorpusStudio API 27

5.1.6 Software sources
The source for the Java/JavaScript software that needs to be compiled consists of three parts,
all of which can be downloaded from https://github.com/ErwinKomen:
1) CrpxProcessor - The Xquery search ‘engine’. Can run as command-line application.
2) CrppServer - The ‘service’ shell around CrpxProcessor. Requires the latter.
3) CrpStudio - CorpusStudio web application. Uses CrpxProcessor internally too.
The three programs have been developed under NetBeans, but it should be possible to get them
running under different IDE’s. The ‘github’ sources only provide the Java and JavaScript
sources.
Each of the programs listed above contains a ‘lib’ directory with .jar files it makes use of (not
on github):
Package Libraries needed
CrpxProcessor log4j-1.2.15.jar

saxon9-s9api.jar
saxon9.jar
saxon9-dom.jar

CrppServer log4j-1.2.15.jar
CrpxProcessor/dist/CrpxProcessor.jar
CrpxProcessor/lib/saxon9-s9api.jar
CrpxProcessor/lib/saxon9.jar
CrpxProcessor/lib/saxon9-dom.jar

CrpStudio log4j-1.2.15.jar
velocity-tools-view-2.0.jar
velocity-1.7.jar
commons-collections-3.2.1.jar
commons-lang-2.4.jar
vtd-xml.jar
CrpxProcessor/dist/CrpxProcessor.jar

5.1.7 Running
The CorpusStudio web application can be started up by (re-)starting tomcat. A possible startup
script could be “crpstudio.sh”:
 sudo service tomcat restart
 sudo cp ~/*.empty /usr/share/tomcat/logs/catalina.out
 sudo tail -n 400 /usr/share/tomcat/logs/catalina.out

This assumes the presence of an empty file called “catalina.empty” in the user’s home directory,
it assumes one is running CentOS (hence the “sudo”) and one’s account has sudo-rights
established.
The application should be running once the Tomcat log file logs a message like “INFO: Server
startup in 9309 ms”. See /usr/share/tomcat/logs/catalina.out.

5.2 Logs and cleanup

There are a number of log files in use within the Linux system. What is relevant for the crpp
and crpstudio services is but a subset of these.

The file /usr/share/tomcat/logs/catalina.out logs debug and error messages issued by
the Java web service that runs under tomcat. This file can get quite large, so it needs to be
removed periodically. Note: the log file is 'automatically' overwritten with an empty log-file
when the startup script /home/erwink/crpstudio.sh is executed.

https://github.com/ErwinKomen

28 Erwin R. Komen

6 Appendices
6.1 Trace code: change in query
What is the chain of events that occur (or need to occur) for a change in a part of a query to
percolate through completely?

Event handling
Changes start with key strokes or mouse selections being detected.

Enabling of events
But detection needs to be enabled by the event-handler being coupled to the events.
The detection-enabling is done by crpstudio.project.addChangeEvents().
This function is called from crpstudio.project.switchTab(). Whenever a user switches
to a different tab-page, a call to addChangeEvents() is made, enabling the detection of
events.

Event-handler
There is one central event-handler for changes in any part of a CRP:
crpstudio.project.ctlTimer(). This function gets two arguments: the (html div) element
from which it originates and a string indicating whether it is an event from a "input",
"textarea" or "select" element. This latter argument is not actually used right now . The type
of element is, where necessary, determined by using the jQuery $(el).is("element-name")
function.

The code inside ctlTimer() first of all determines what the value of the (form) element is,
and then determines the environment 'type' (query, definition, constructor, dbfeat, project)
from the "id" attribute of the element (through the crpstudio.project private method
getItemObject(sCallerId)).
Note: This is done by comparing the sCallerId value with all the "loc" values that are
stored in the variable crpstudio.config.prj_access. So any form-field whose changes
need to perculate further must have their "id" field specifed as a "loc" value in prj_access.

CorpusStudio API 29

7 References
INL. 2014. Blacklab Server Overview. Accessed September 2014.

URL: https://github.com/INL/BlackLab-server/wiki/BlackLab-Server-overview

Komen, Erwin R. 2009. CorpusStudio manual. Ms. Nijmegen, Netherlands,

<http://erwinkomen.ruhosting.nl/software/CorpusStudio/CrpStu_Manual.pdf >.

http://erwinkomen.ruhosting.nl/software/CorpusStudio/CrpStu_Manual.pdf

	1 Introduction
	1.1 Short overview: principle components
	1.2 Short overview: interacting with the CRPP webservice

	2 Overview of the CorpusStudio components
	3 Notes on the /crpstudio server component
	3.1 User accounts and logging in/off

	4 The /crpp web service input specification
	4.1 Unified response structure
	4.2 Issuing “crpchg”
	4.3 Issuing “crpdel”
	4.4 Issuing “crpget”
	4.5 Issuing “crpinfo”
	4.6 Issuing “crplist”
	4.7 Issuing “crpset”
	4.8 Issuing “dbinfo”
	4.9 Issuing “dblist”
	4.10 Issuing “dbset”
	4.11 Issuing “dbupload”
	4.12 Issuing “debug”
	4.13 Issuing “exe”
	4.14 Issuing “reset”
	4.15 Issuing “serverinfo”
	4.16 Issuing “settings”
	4.17 Issuing “statusxq”
	4.18 Issuing “statusxl”
	4.19 Issuing “txt”
	4.20 Issuing “txtlist”
	4.21 Issuing “update”

	5 Web service maintenance
	5.1 Adapt CorpusStudio for use with other corpora
	5.1.1 Requirements
	5.1.2 Installation
	5.1.3 File crp-info.json
	5.1.4 File crpstudio-settings.json
	5.1.5 File crpp-settings.json
	5.1.6 Software sources
	5.1.7 Running

	5.2 Logs and cleanup

	6 Appendices
	6.1 Trace code: change in query

	7 References

