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Abstract

This paper studies properties of the score distributions
of calibrated log-likelihood-ratios that are used in auto-
matic speaker recognition. We derive the essential con-
dition for calibration that the log likelihood ratio of the
log-likelihood-ratio is the log-likelihood-ratio. We then
investigate what the consequence of this condition is
to the probability density functions (PDFs) of the log-
likelihood-ratio score. We show that if the PDF of the
non-target distribution is Gaussian, then the PDF of the
target distribution must be Gaussian as well. The means
and variances of these two PDFs are interrelated, and de-
termined completely by the discrimination performance
of the recognizer characterized by the equal error rate.
These relations allow for a new way of computing the
offset and scaling parameters for linear calibration, and
we derive closed-form expressions for these and show
that for modern i-vector systems with PLDA scoring this
leads to good calibration, comparable to traditional logis-
tic regression, over a wide range of system performance.

This is a slightly elaborated version of a paper with
the same title that has appeared at Interspeech 2013 [1].

1. Introduction
In recent years, calibration in automatic speaker recogni-
tion has received more attention [2–12]. Intuitively, cal-
ibration is related to the ability to properly set a thresh-
old in a speaker detection system so as to minimize the
expected error [13]. In speaker detection, the task is
to decide whether or not two speech signals originate
from the same speaker. Because all speaker recogni-
tion systems internally work with some scalar score that
expresses speaker similarity, a score threshold can con-
trol the trade-off between the two types of errors that
a system can make [14, 15]. Indeed, in the series of
NIST Speaker Recognition Evaluations (SRE) the pri-
mary evaluation measure has been sensitive to calibra-
tion. Until SRE 2010, calibration was assessed in a single
operating point, through a single decision cost function
known as Cdet. Also other technologies in speech tech-
nology or biometrics utilize calibration-sensitive evalu-
ation measures, such as the cost functions Cavg in lan-
guage recognition [16] and the Half Total Error Rate in
face recognition [17].

Since around 2004 [2, 3] the concept of calibration
in speaker recognition has been generalized to a range
of operating points by using proper scoring rules [18] to
evaluate probabilistic statements about whether a trial is
a same-speaker (target) or different-speaker (non-target)
trial. A system that represents its score as a likelihood-
ratio can be well-calibrated over a wide range of op-
erating points simultaneously. This representation of
the speaker recognition score has direct application in
speaker detection, as the decision threshold follows di-
rectly from the cost function parameters [15], but also
in evidence reporting in forensic speaker comparison
cases [5, 19]. In the NIST SRE 2012, for the first time,
hard decisions were no longer required, and instead the
recognition score had to be submitted in the form of a
likelihood-ratio. The evaluation measure effectively sam-
pled the decision cost function at two different parame-
ters [20, 21].

Since a calibrated likelihood-ratio is still just a score,
all properties of normal scores apply to likelihood-ratios
as well, and we can draw DET and ROC plots, deter-
mine EERs and inspect the score distributions. The axis
warping of the DET plot [14] in combination with the
observed more-or-less straight DET curves suggests that
target and non-target score distributions could be accu-
rately modelled with Gaussians. These score distribu-
tions and the relation to the DET have been studied previ-
ously [22, 23] and are very instructive to the understand-
ing of basic detection theory and the concepts of calibra-
tion [15, 24]. In this paper we are interested in properties
of the distributions of calibrated log-likelihood-ratios.
This may help situations were we carry out a calibration
transformation on raw recognition scores, because it can
tell us what the calibrated distributions should look like.

The paper is organized as follows. We define the very
nature of a calibrated likelihood-ratio in Section 2. In
Section 3 we investigate the properties of log-likelihood-
ratio distributions when they are Gaussian, and we will
then apply these in Section 4 as a new method for cali-
bration. We then present experiments and conclusions.

2. Likelihood-ratio idempotence
Here we carefully define the likelihood-ratio (LR) and
show that it has the interesting property: the LR of the LR
is the LR, which forms a definition of calibration.



The speaker recognition system has as input two
speech segments, denoted X and Y , which it processes
in two steps. We represent the first step as s = f(X,Y ).
To keep things general, smay represent different kinds of
output, e.g., a pair of acoustic feature vector sequences, a
pair of i-vectors, or just a single, scalar recognition score.
The second step is to compute the likelihood-ratio r as a
function of s, as:

r =
P (s | H1,M)

P (s | H2,M)
(1)

where H1 is the (target) hypothesis that X and Y origi-
nate from the same speaker, H2 the (non-target) hypoth-
esis that they are from two different speakers, andM is
a generative probabilistic model for s. In current prac-
tice, s is always the recognition score, so thatM merely
models scalar scores—not i-vectors, acoustic feature se-
quences or speech signals. But our theory below is suf-
ficiently general to remain applicable in future to more
ambitious models, when s might have a more complex
form. We now assume there is given the hypothesis prior,
π = P (H1), which allows us to express the hypothesis
posterior, via Bayes’ rule as:

P (H1 | s,M, π) =
πr

πr + (1− π)
(2)

This shows that r is a sufficient statistic: the posterior
depends on s only through r. This allows rewriting the
posterior as:

P (h | s,M, π) = P (h | r,M′, π), h ∈ {H1, H2}
(3)

where we have introducedM′ to denoteM, augmented
by asserting (1). Although r contains all the relevant in-
formation thatM can extract from s to recognize the un-
known hypothesis, it must be stressed that r and s do
not necessarily contain all the relevant information that
could have been extracted from the original input X,Y
by some more elaborate model. Now we use the odds
form of Bayes’ rule:

P (H1 | ρ,M, π)

P (H2 | ρ,M, π)
=

π

1− π
P (ρ | H1,M)

P (ρ | H2,M)
(4)

where ρ is a placeholder for r or s and M forM orM′.
Combining this with (3), we find the desired relationship
(the LR of the LR is the LR [25]):

r =
P (s | H1,M)

P (s | H2,M)
=
P (r | H1,M′)
P (r | H2,M′)

. (5)

If we define x to be the log-likelihood-ratio (LLR):

x = log r (6)

we also find1 (the LLR of the LLR is the LLR):

x = log
P (x | H1,M′′)
P (x | H2,M′′)

(7)

whereM′′ augmentsM′ by addition of (6).

2.1. Implications
Rewriting (5) as:

P (r | H1,M′) = rP (r | H2,M′) (8)

we see that if either of the two distributions is given,
then the other distribution is completely determined—
they cannot vary independently. Moreover, a further re-
striction is placed on these distributions: since the LHS
must integrate to 1, the expected value of the non-target
distribution (the integral of the RHS) must be: 〈r〉 = 1.
Similarly, for targets: 〈 1r 〉 = 1. By applying Jensen’s in-
equality [26] we also find for targets: 〈x〉 ≥ 0 and for
non-targets: 〈x〉 ≤ 0.

2.2. Good and bad calibration
How does (5) function as a definition of calibration?
Since it is an equality, won’t all LRs calculated via (1)
by some model M, just automatically satisfy (5)? Yes
they will, but only ifM andM′ are related as explained
above. If we want to independently judge the goodness of
the calibration of r, we do not condition the distributions
for r on the recognizer’s model M. Instead, we could
empirically observe the target and non-target values of r
as calculated by the recognizer over an independent, su-
pervised database of speaker detection trials. Letting O
denote the empirical observation, we could then say the
modelM is well calibrated if:

r =
P (s | H1,M)

P (s | H2,M)
≈ P (r | H1,O)

P (r | H2,O)
(9)

Bad calibration is when the LRs given respectively by
the recognizer’sM and empirical observation O, do not
agree in this way. This can and does happen, since O
is independent of any development data that was used to
determine the form and parameters ofM.

It should be noted that (9) does not give a practi-
cal recipe to judge degree of goodness of calibration—
it specifies neither how to assign P (r | h,O), nor how
to numerically evaluate the agreement between LHS and
RHS. For practical solutions for calibration-sensitive ob-
jective functions, see for example [27].

3. Gaussian distributed
log-likelihood-ratios

Inspired by the fact that DET curves in speaker recogni-
tion tend to be straight [22], we explore a Gaussian so-
lution to the LLR distribution constraint (7). Since target

1To see this, note the log transformation is monotonic and the Jaco-
bian of the transformation cancels in the ratio.



and non-target LLR distributions are so tightly coupled,
it turns out that if the one is assumed to be Gaussian,
then the other must also be. We shall use the shorthand:
e(x) = P (x | H1,M′′) and d(x) = P (x | H2,M′′).
Arbitrarily assuming a Gaussian distribution for non-
targets (different-speaker trials):

d(x) = N (x | µd, σd) =
1√

2πσd
e−(x−µd)

2/2σ2
d . (10)

We derive the functional form for targets2, e(x), when (7)
applies:

e(x) = exd(x) =
1√

2πσd
ex−(x−µd)

2/2σ2
d . (11)

We collect the terms in x in the exponent, which itself can
be written like

−x
2 − 2µdx+ µ2

d

2σ2
d

+
2σ2

dx

2σ2
d

(12)

= −x
2 − 2(µd + σ2

d)x+ µ2
d

2σ2
d

(13)

= −
(
x− (µd + σ2

d)
)2

2σ2
d

+
2µdσ

2
d + σ4

d

2σ2
d

(14)

The first term is in the familiar form of a Gaussian expo-
nent, the second will result in a constant factor. Gathering
terms, and writing

µe = µd + σ2
d, (15)

the expression for the same-speaker comparison log-
likelihood-ratio scores becomes

e(x) =
1√

2πσd
eσ

2
d/2+µd e−(x−µ

2
e)/2σ

2
d (16)

= eσ
2
d/2+µd N (x | µe, σd). (17)

We see that e(x) is of Gaussian shape, with

σe = σd ≡ σ. (18)

Since e(x) must be a proper PDF, its integral over x must
be unity, from which follows that

eσ
2/2+µd

∫ ∞
−∞
N (x | µe, σ) dx = 1 (19)

−2µd = σ2. (20)

Finally, with (15) we find

µe = µd + σ2 = −µd ≡ µ, (21)

This shows that d(x) and e(x) are equal variance Gaus-
sians with means symmetric around zero at ±µ, and
where the variance and mean are related (20)

σ2 = 2µ. (22)

2trials where the speakers are equal

3.1. Equal Error Rate and d′

Using the symmetry of the solution, it is clear that the
threshold for the equal error rate is at x = 0. Using the
expression for the miss probability, the equal error rate
E= is

E= =

∫ 0

−∞
N (x | µ, σ) dx (23)

=

∫ −µ/σ
−∞

N (x | 0, 1) dx ≡ Φ(−µ/σ), (24)

where Φ(x) is the cumulative normal distribution.
It is sometimes useful to recognize the parameter d′

from detection theory, which is the difference in means
expressed in terms of the standard deviation, here d′ =
2µ/σ. With (24) the relation becomes

E= = Φ(−1

2
d′). (25)

d′ = σ = −2Φ−1(E=), (26)

introducing Φ−1(y), the inverse of the cumulative nor-
mal distribution. The importance of the relations above is
that µ and σ are determined by the discrimination perfor-
mance measured by E=, using (22) and (26)

µ =
σ2

2
= 2[Φ−1(E=)]2. (27)

4. A new calibration method
In practice, automatic speaker recognition systems do
not deliver scores that can directly be interpreted as a
log-likelihood-ratio, even though they are computed as
such, for instance in the good old UBM-GMM scor-
ing [28] or the latest i-vector PLDA scoring [29]. A prac-
tical solution to this is to convert raw scores s(X,Y ) to
calibrated log-likelihood-ratios by some transformation
function x(s), usually constrained to be monotonic in-
creasing. There are many ways of doing this. The Fo-
Cal [30] and BOSARIS [31] toolkits use logistic regres-
sion to discriminatively train linear calibration transfor-
mations. Other possibilities include isotonic regression
(PAV [31]) and line-up calibration [10] that uses the rank
in a line-up of foil speakers. In FoCal or BOSARIS, the
score-to-LLR function is affine:

x(s) = as+ b (28)

and the parameters a and b are found by optimizing cross-
entropy, a calibration-sensitive objective function defined
on a supervised set of speaker recognition trials.

Here we contrast the popular discriminative logis-
tic regression solution to a new generative, constrained
maximum-likelihood (ML) solution. Our constraints fol-
low from assuming (i) Gaussian LLR distributions, and
(ii) an affine score-to-LLR transform (28). This implies



that (i) the LLR distributions are constrained as derived in
Section 3, and (ii) the score distributions are also Gaus-
sians, with equal variances. With no LLR distribution
constraints, we would have had 6 free parameters: 2
means, 2 variances and 2 calibration parameters. But we
have imposed 3 constraints, equal variances (18), sym-
metric means (21) and (22). We find the remaining 3 free
parameters by maximizing the following weighted likeli-
hood:

α

Ne

∑
i∈E

logN (si | me, v) +
1− α
Nd

∑
i∈D

logN (si | md, v)

(29)

where E indexes Ne target scores, D indexes Nd non-
target scores, and where we have generalized the usual
maximum-likelihood (ML) criterion by relative weight-
ing of targets by 0 ≤ α ≤ 1 and non-targets by 1−α. This
weighting helps to compensate for the restrictive equal-
variance modeling assumption, by allowing the ML cri-
terion to focus on an operating point with a target propor-
tion of α. This mechanism will be demonstrated in Fig. 2
below. The score distribution parameters that need to be
optimized are the meansme,md and common variance v.
Setting derivatives to 0, we find the maximum likelihood
at the sample means:

me =
1

Ne

∑
i∈E

si, md =
1

Nd

∑
i∈D

si (30)

and at a weighted combination of sample variances:

v =
α

Ne

∑
i∈E

(si −me)
2 +

1− α
Nd

∑
i∈D

(si −md)
2 (31)

By (28), the LLR distribution parameters become σ2 =
a2v, µe = ame + b and µd = amd + b. Finally, applying
the constraints σ2 = µe − µd and µe = −µd, we can
solve for the calibration parameters:

a =
me −md

v
, b = −ame +md

2
(32)

We call this recipe constrained, maximum-likelihood,
Gaussian (CMLG) calibration. An advantage of CMLG
is that it has a closed form, in contrast to the iterative op-
timization required by logistic regression.

4.1. Experiment
In order to test CMLG we apply it to a number of recogni-
tion trials sets. We use a set of trials crafted for duration-
dependence experiments [9] from the NIST SRE 2008
and 2010 trial sets, the telephone-telephone “extended”
trial lists. We constructed short duration segments of 5,
10, 20, and 40 seconds from both train and test segments
by simply selecting the first frames after speech activity
detection. All durations, including the full conversation

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Correlation in Cllr for different calibration methods

constrained maximum likelihood Gaussian (CMLG)

lo
gi

st
ic

 re
gr

es
si

on

Figure 1: Cllr values of the 25 trial lists for the CMLG method
(horizontal) versus logistic regression (vertical).

side, were tested in all combinations, leading to 25 differ-
ent trial lists. The NIST SRE10 ‘det-5’ performance over
these lists ranges from E= = 2.9–26 %. The recognition
system is a standard i-vector based system with PLDA
scoring described elsewhere [21].

We contrast CMLG (with α = 1
2 ) to the traditional lo-

gistic regression method. The calibrations are trained on
NIST SRE 2008 data (427 375 trials) and applied to SRE
2010 trials for evaluation (10 007 900 trials), all gender
mixed. We evaluate the 25 different trial list combina-
tions using Cllr, a cost function that is sensitive to cali-
bration over the whole DET curve [3]. We used R’s glm
routine for logistic regression.

The results are shown in Fig. 1, where we have plot-
ted the Cllr obtained using CMLG calibration versus Cllr

obtained using logistic regression. The values are highly
correlated. For CMLG, the average Cllr over all 25 con-
ditions is 0.375, for logistic regression it is 0.376. These
can be called good, as the mean Cmin

llr is 0.370.
We also tried CMLG on different data, with scores

generated by a different speaker recognition system. The
scores are from an i-vector PLDA speaker recognizer
submitted by the ABC team [32] to the NIST SRE 2012
evaluation [20]. Calibration was trained on about 120
million scores, obtained by processing multiple micro-
phone and telephone speech segments of 2019 male and
female speakers from the SRE’04, ’05, ’06, ’08 and ’10
Mixer databases. Performance was evaluated on about
80 million scores, obtained by pooling all five “common
evaluation conditions” of SRE 2012 [20].

Figure 2 compares the performance of the proposed
CMLG (blue triangles) against the traditional prior-weight-
ed logistic regression (red circles) on the SRE 2012
scores. On the horizontal axis we show the target propor-
tion, which was used to weight the training criterion, in
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Figure 2: Cprimary for logistic regression and CMLG calibra-
tion methods for ABC’s SRE12 submission, as a function of
prior α used in the objective / ML optimization.

log odds form: logα−log(1−α). On the vertical axis, we
show Cprimary, the calibration-sensitive SRE 2012 eval-
uation criterion [20], where smaller values indicate better
performance. In the case of logistic regression, α was
used in a similar manner to relatively weight targets and
non-targets in the discriminative logistic regression train-
ing criterion, see [27] for details. Observe that CMLG
and logistic regression have similar minima, but CMLG
has a wider, flatter minimum. CMLG is also much faster
to train, because it has a closed-form solution, while lo-
gistic regression needs iterative numerical optimization.

5. Discussion and Conclusions
We have shown in this paper, that if the different-speaker
calibrated log-likelihood-ratio scores from a speaker re-
cognition system follow a Gaussian distribution, then
the distribution of the same-speaker scores must also be
Gaussian after calibration, with the same variance but op-
posite mean. Because monotonically increasing score-to-
likelihood-ratio functions do not change the DET plot,
such equal-variance distributions in the calibrated score
domain imply 45◦ DET-plots in the raw score domain as
well—which is neither observed with real data3 nor de-
sired for applications operating in the low false alarm re-
gion. The logical conclusion then is that real scores, if
they are well-calibrated, will not be Gaussian. However,
we see that our PLDA system can be calibrated quite well
under the Gaussian assumptions, and indeed we have no-
ticed that i-vector PLDA systems tend to have score dis-
tributions that appear more Gaussian than earlier tech-

3We have measured the slope of the DET in the conventional error
region 0.1–50 % for the data in the experiment. The mean slope over
the 25 conditions is −0.99 with a standard deviation of 0.06, so in fact
this data appears to honour the equal variance condition quite well.

nologies, such as i-vector LDA cosine distance scoring,
support vector machines or the UBM-GMM likelihood
ratio scoring.

The Gaussian solution to the LLR equation (7) is one
where both distributions are shaped by the same math-
ematical function. In signal detection theory, where the
distribution represents noise, this seems almost manda-
tory, but in speaker recognition this is not an obvious
assumption. We have experimented with other distribu-
tions, e.g., in the likelihood-ratio domain (5) a pair of
Gamma distributions is a solution to the calibration con-
dition, and these are asymmetric in the log-likelihood-
ratio domain. However, such distributions seem to be not
at all representative of real score distributions. Also, an
arbitrary linear combination of Gaussians with different
means and corresponding variances is a solution to (7)
which allows some freedom in fitting a shape of score
distribution. In principle, there is no need for real score
distributions to follow any mathematical description, but
we have observed that many researchers like to use some
form of idealized shape of the score distributions to un-
derstand the data [5, 22]. When calibration methods are
designed, condition (7) should therefore be taken into ac-
count.

The relations derived in Section 3 open up more
possibilities for relations between the various evaluation
measures. For instance, we can compute Cllr by numeri-
cal integration as

1

log 2

∫ ∞
−∞
N (x | µ, σ) log(1 + e−x) dx (33)

and this relates Cllr to E= via (26) and (27) for Gaus-
sian score distributions. E.g., for our set of 25 trial lists
this expression differs fromCmin

llr only 0.006 in root mean
squared difference, or about 2 %. Instead of for calibra-
tion, the relations can also be used for fusion of sys-
tems. For pre-calibrated systems this leads to solutions
that transparently depend on the correlation between the
scores.

The fact that we can obtain the linear calibration pa-
rameters under the Gaussian assumption is an interest-
ing side-effect of this study. The calibration parameters
can be expressed in closed-form, and do not explicitly
consider cross entropy or Cllr as an optimization objec-
tive. For score distributions that do not resemble a Gaus-
sian, this calibration method is likely to fail—we there-
fore do not recommend CMLG calibration as a general
technique. Still, we are quite pleased that the experiments
support the mostly theoretical results of this paper.
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