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ABSTRACT

This paper presents the performance evaluation of i-vector and
PLDA based speaker recognition system which incorporate quality
measures function (QMF) in linear calibration. Evaluated on the
recent NIST SRE’12 corpus, the linear calibration with QMF as the
additional term shows a positive gain in the system performance
compared to the conventional linear calibration with only two terms.
Based on the equal error rate values measured from our I4U evalua-
tion trial set, the QMF calibration approach shows 10 – 37 % relative
improvement compared to the conventional linear calibration. It is
shown that by adding 1 – 2 extra parameters in the linear calibration
through QMF approach, there is a potential to improve the cali-
bration and discrimination performances of a speaker recognition
system.

Index Terms— Calibration, duration, quality measures, QMF,
speaker recognition.

1. INTRODUCTION

In a specific field such as forensic speaker identification [1], cali-
bration is very important in order to make the scores produced by
an automatic speaker recognition system more reliable. By present-
ing calibrated scores in the likelihood ratio form, results can be used
as legal evidence in court [2]. In the more general field of speaker
recognition, the significance of calibration is becoming more rec-
ognized by the community. Especially in the 2012 edition of the
speaker recognition evaluation (SRE) from the National Institute of
Standard and Technology (NIST), calibration is an interesting topic
to be discussed amongst the researchers in the field [3]. This is be-
cause of the requirement by NIST to participants to express their
system output in the log-likelihood-ratio form.

The NIST SRE’12 provides plenty of challenges to its partic-
ipants. In terms of quality measures of speech samples, there are
two problems addressed in this year evaluation, duration variation
(20–160 s) and noisy speech conditions. This year’s evaluation also
includes new performance measure called primary cost that is de-
fined as the average of Bayes error rates from two detection cost
functions. To address some of the interesting problems offered by
the SRE’12 evaluation, this paper presents the performance analy-
sis from calibration that is based on the duration quality measures
function (QMF) approach.

The duration QMF for calibration in speaker recognition system
is proposed in [4]. In this approach, we add the QMF as an extra
term in the linear calibration. Evaluated on the NIST SRE’08 and
SRE’10 corpora with truncations to shorter duration, it has been ob-
served that QMF calibration is robust in the conditions where speech
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duration varied. In this paper, motivated by the challenging NIST
SRE’12 protocol, we use the QMF approach as a simple yet robust
technique to deal with the duration variability effect on the discrim-
ination and calibration performance of speaker recognition system.

This paper presents the speaker recognition system and corpora
descriptions in Section 2 and Section 3, respectively. Calibration
methods are detailed in Section 4 and performance measures are
listed in Section 5. Experiment results are discussed in Section 6.
This paper is concluded in Section 7.

2. SPEAKER RECOGNITION SYSTEM
System configuration of speaker recognition in this paper is fairly
similar with the configuration in the latest papers of the authors [4,5].
The system is based on i-vector [6] framework and probabilistic lin-
ear discriminant analysis (PLDA) modeling [7, 8]. The main differ-
ence is that there is an inclusion of speech enhancement algorithm
with a dynamic noise suppression rule [9] in the system used for
this paper. For this noise suppression purpose, we did noise estima-
tion through improved minima controlled recursive averaging (IM-
CRA) [10], and Wiener filter is applied on the amplitude spectrum
as a soft mask.

Spectral features used in this system is 60 dimensional MFCCs
which consist of 19 base MFCCs and log energy, augmented with
deltas and double deltas. The features are extracted every 10 ms
using 30 ms window. To enhance the features quality, a feature-
warping was applied [11]. A speech activity detection (SAD) is
implemented to extract the active speech frames from the fea-
tures [12]. Gender-dependent with 2048 components UBM (uni-
versal background model) was trained using NIST SRE 2004–2006,
Switchboard Cellular phase 1 and 2, and Fisher English corpora.

The i-vectors were trained using a low dimensional (400 dimen-
sions) matrix that defines both the speaker and channel subspaces.
Linear discriminant analysis (LDA) projection was applied in order
to reduce the i-vectors dimension to 200. Prior to PLDA modeling,
the i-vectors were processed by i-vector centering, within-class co-
variance normalization (WCCN) and length-normalization.

3. CORPORA
The speaker recognition system calibration performance is evalu-
ated using NIST SRE’12 corpus. There are three different datasets
used in the experiments. The first two is the Dev-I4U (develop-
ment) and Eval-I4U (evaluation) sets from I4U1 trials list [13]. The
third dataset used in the experiments is the evaluation set from NIST
SRE’12 trials list which refers to Eval-SRE’12 set in this paper. For
this NIST SRE 2012 evaluation, we made three sub-selections of the
core-test core-training condition for different noise levels, based on
the 5 common conditions (cc’s) defined in the evaluation plan, using

1I4U is a joint effort from 9 research Institutes and Universities across 4
continents in joining the NIST SRE’12 evaluation. The lists are available via
http://lands.let.ru.nl/˜saeidi/I4U.tgz



Table 1. Number of trials in the Dev-I4U, Eval-I4U and Eval-
SRE’12 sets for female gender and “unknown” non-target trials.

Set Noise Number of Trials
condition Target Non-target
Clean 6621 2118521

Dev-I4U 15 dB noisy 6621 2118521
6 dB noisy 6621 2118521
Clean 6921 2997225

Eval-I4U 15 dB noisy 6921 2997225
6 dB noisy 6921 2997225
Clean 4353 120223

Eval-SRE’12 15 dB noisy 2913 7908
6 dB noisy 2912 7908

version 1 of the trial key. The first level, “noise”, consisted of all
telephone and microphone speech, without noise addition, that were
not recorded in a noisy environment (the intersection of cc1 and cc2
with trials from cc5 removed). For the two noisy conditions, “15 dB”
and ‘6 dB,” we selected trials from cc3 and cc4 with added noise of
types “babble” and “HVAC” at 15 dB and 6 dB, respectively.

We divided each dataset into 3 different subsets based on the
noise conditions in the test segments of the trials listed as clean (no-
alteration), 15 dB and 6 dB noise-levels subsets. The number of tri-
als for target and non-target scores are presented in Table 1. Parti-
tioning the results with respect to SNR is intended for analysis of
the calibration sensitivity with duration function to SNR-levels in
test segments. In the training of calibration parameters, the scores
were pooled without noting the SNR-levels. Only the unknown non-
target2 trials are included in the experiments, and we focus our exper-
iments on female speakers. By looking at the durations of utterances
in the NIST SRE’12 database (a histogram is provided in Figure 2),
we see there is a high variability in duration, therefore performing
consistent calibration is a very challenging task.

4. CALIBRATION

All calibrations performed for the experiments in this paper are
based on the linear transformation of scores into calibrated log like-
lihood ratio scores. There are two calibration approaches used. The
first approach is conventional linear calibration with two parame-
ters, and the second approach is linear calibration that applies quality
measures function (QMF) as an extra linear term in calibration.

4.1. Linear calibration
In the linear calibration, we transform a set of raw scores s which
produced from the speaker recognition system to a set of calibrated
scores ` using a linear transformation

` = w0 + w1s, (1)

where w0 is the offset/gain parameter and w1 is the scaling param-
eter of calibration. In this paper, this two parameterized linear cali-
bration is referred to as conventional calibration approach.

In the experiment, calibration parameters are trained in a set of
scores, and then applied to another set of scores to be evaluated. In
this paper, the calibration parameters are trained in the Dev-I4U set
(including all noise condition subsets) and applied to all sets which
are Dev-I4U, Eval-I4u and Eval-SRE’12. The parameters for both
conventional and QMF calibration approaches were trained via lo-
gistic regression [14] using FoCal toolkit3.

2This is done for compatibility results with earlier SRE protocols. [3]
3Software is available at https://sites.google.com/site/

nikobrummer/focal

Table 2. Duration quality measure functions (QMFs) proposed for
calibration on various duration conditions.

n QMF: Qn(dm, dt, . . .)
Additional
parameters

1 Q1 = w2

∣∣∣∣log dm
dt

∣∣∣∣ w2

2 Q2 = w2 log
2 dm
dt

w2

3 Q3 = w2 log
dm
dc

log
dt
dc

w2, dc

4
Q4 = w2 log

dm
dc

log
dt
dc

+

w3

(
log2

dm
dc

+ log2
dt
dc

) w2, w3, dc

4.2. Quality Measure Function

Quality measures function or QMF calibration is proposed by the au-
thors in [4] and it was analyzed for the SRE’08 and SRE’10 corpora.
This calibration approach basically is a linear calibration technique
with several extra parameters in the linear transformation. It also
includes the quality measures of speech utterance in the calibration,
in this case, the duration of active speech. The QMF calibration
approach is applied via linear scores transformation that can be for-
mulated as:

` = w0 + w1s+Q(dm, dt, w2, . . .) (2)

with Q(dm, dt, w2, . . .) as the function that defines quality measures
we use for calibration, and dm and dt as the duration of active speech
(after SAD) in the model and test segments, respectively. There were
multi-sessions enrollment in the NIST SRE’12, thus we use sum of
the duration of utterances in model segments as dm .

There are four QMFs proposed in [4] and all of this QMFs are
analyzed in this paper as well. The four QMFs are presented in Ta-
ble 2. All QMFs are modeled from the behavior of the calibration pa-
rameters of linear score transformation (scaling parameters) in vari-
ous duration conditions of the model and test segments. Figure 1 de-
picts the behavior of the scaling parameters across duration of model
and test segments. The first two QMFs, Q1 and Q2 are formed in
order to model the large deviation of the scaling parameters when
there is a large difference (mismatched) between the model and test
segments. The last two QMFs, Q3 and Q4 are modeled from the
saddle-plane like of the scaling calibration parameters in calibration
which is presented in Figure 1 with dc = 20 s.

5. PERFORMANCE MEASURES

There are five performance measures used to characterized the
speaker recognition system performance of discrimination and clas-
sification, namely equal error rate (E=), primary cost from NIST
SRE’12 (Cprimary), cost of log likelihood ratio calibration (Cllr),
minimum Cllr (Cmin

llr ), and the miscalibration cost (Cmc).

5.1. Equal Error Rate
Equal error rate or E= is the error rate of a binary-classifier when
the probability of the false-acceptance rate and false-rejection rate is
equal at a certain point in the detection error trade-off (DET) curve.
The E= was computed using sretools analysis package4 in R
using relative operating point convex hull (ROC-CH) approach.

4Software is available at https://sites.google.com/site/
sretools/
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Fig. 1. The saddle-plane shape of calibration (offset) parameters in
various duration conditions on the model and test segments [4].

5.2. Primary cost for the NIST SRE’12
For this year’s speaker recognition evaluation, NIST announced new
detection cost function or Cdet that is referred to Cprimary. Unlike
the previous evaluations, the SRE’12 cost function is a combination
of two costs, the cost of NIST SRE’10 (Ptar = 1/1000) and another
cost with greater prior than SRE’10 (Ptar = 1/100). Each of these
Cdet is computed using

Cdet =Cmiss × Ptar × Pmiss|tar

+ CFA × (1− Ptar)× (PFA|non,known · Pknown

+ PFA|non,unknown · (1− Pknown))

(3)

with Cmiss = CFA = 1. Because in the experiments, we used only
unknown non-target trials5, Equation (3) becomes

Cdet = Cmiss×Ptar×Pmiss|tar+CFA×(1−Ptar)×PFA|non. (4)

The Cdet values are computed using BOSARIS6 toolkit via Bayes
error rate computation.
5.3. Cost of Log Likelihood Ratio Calibration (Cllr)
As the calibration performance measures, we use cost of likelihood
ratio calibration or Cllr [15]. The metric Cllr can be empirically
computed by

Cllr =
1

Ntar

∑
i∈tar

log2(1 + e−`i ) +
1

Nnon

∑
j∈non

log2(1 + e`j ) (5)

with `i and `j as the calibrated log likelihood ratio scores for the tar-
get and non-target trials, respectively. Besides Cllr , we also use two
other measures for calibration namely Cmin

llr or the minimum value
of Cllr and Cmc or mis-calibration cost which is defined as the dif-
ference between Cllr and Cmin

llr . The metric Cmin
llr was computed

using isotonic regression through pool adjacent violators (PAV) al-
gorithm [16].

6. RESULTS

Results of the calibration experiments conducted in this paper are
presented in Table 3. Generally in all evaluated datasets, the sys-
tem tends to perform slightly better in 15 dB noise condition or 6 dB

5This corresponds to Pknown = 0 for our experiments.
6Software is available at https://sites.google.com/site/

bosaristoolkit/

noise condition (in Cmc measure). This is because each of the origi-
nal NIST segments which are included in the I4U lists has two noise
variants included in the training of PLDA and enrollment data. The
system is biased to perform better in the slightly noisy conditions
compared to the unaltered (clean) condition.

The details of results analysis in Table 3 are divided into two
parts: the Dev- and Eval-I4U sets, and Eval-SRE’12 set. Those anal-
ysis are discussed in the following.

6.1. Results on I4U Trials List

In this subsection, we present the analysis of calibration experiment
results on the Dev-I4U and Eval-I4U sets. In the Dev-I4U set results,
one can observe from Table 3 that all QMF calibrations give lower
values across all performance measures than the linear calibration
on all noise subsets. This is expected because when we applied the
calibration parameters trained on the Dev-I4U set to the Dev-I4U set
itself (self-calibration).

In the Eval-I4U set results, the QMF calibrations perform well
across all performance measures when we compared it to the linear
calibration results. Table 3 shows that all the QMF calibrations out-
perform the linear calibration in terms of Cmin

llr and E= performance
measures. Based on these two performance metrics, Q1 appears to
be the best QMF that provides the best discrimination performance
compared to the linear calibration and all other QMF calibrations.
The Q1 calibration results in absolute reduction of 0.28 %, 0.47 %,
and 0.82 % in the E= compared to the conventional linear calibration
on the clean, 15 dB and 6 dB conditions, respectively. This equals to
10 – 37 % relative improvement in performance.

In the mis-calibration cost or Cmc metric, the QMFs calibration
only perform better than the linear calibration in the clean condition.
Even though the Cmc values for the 15 dB and 6 dB noise conditions
for the QMF calibrations are not lower than the linear calibration,
still the Cllr and Cmin

llr values of QMF calibrations are already better
than the conventional linear calibration. Using the Cllr and Cprimary

measures, the QMF calibrations perform better than the linear cal-
ibration in general, with the Q1 and Q3 performances slightly sur-
pass the Q2 and Q4 calibrations. Evaluated on the Eval-I4U set, the
QMF calibrations offer better performance than the conventional lin-
ear calibration based on the observations from all five performance
measures.

Comparing all four QMFs for calibration, Table 3 shows that the
Q4 performs the best when calibrations applied in the Dev-I4U set
while Q1 performs the best in the Eval-I4U set. This results indi-
cate that the more complex Q4 function that model the saddle-plane
of calibration parameters distribution does not necessary generalize
better than the more simple function such as Q1. The Q4 training
has clearly over-fitted to the calibration development set (Dev-I4U).
On the other hand, the simple Q1 function can be easily and effec-
tively implemented in the cross-calibration 7. Regardless of which
QMF is the best for calibration, all QMF calibrations indicate better
performances in terms of discrimination and calibration when it is
compared to the case where duration information are dismissed.

6.2. NIST SRE’12 Evaluation Results

The experimental results on the evaluation set from NIST SRE’12
(Eval-SRE’12) are slightly different from results on the Dev-I4U and
Eval-I4U sets. As presented in Table 3, the QMF calibrations only
surpass the linear calibration performance in the 6 dB noise condi-
tion subset. In other noise subsets, applying QMF calibrations does

7Applying the calibration parameters which were trained on one set to
another set, in this case, from the Dev-I4U set do the Eval-I4U set.



Table 3. System performance in terms of Cllr , Cmin
llr , Cmc , E=

and Cprimary on the Dev-I4U, Eval-I4U and Eval-SRE’12 sets.

Set Noise Calibration Method
cond. N.A.* O** Q1 Q2 Q3 Q4

Cost of log-likelihood ratio calibration (Cllr )

Dev Clean 4.373 0.195 0.183 0.183 0.192 0.178

I4U 15 dB 2.918 0.078 0.070 0.070 0.071 0.069
6 dB 6.100 0.115 0.100 0.099 0.103 0.098

Eval Clean 3.045 0.170 0.148 0.157 0.161 0.172

I4U 15 dB 1.713 0.082 0.078 0.087 0.072 0.110
6 dB 4.338 0.104 0.089 0.098 0.088 0.117

Eval Clean 11.099 0.194 0.300 0.601 0.306 0.505

SRE’12 15 dB 5.199 0.133 0.183 0.199 0.145 0.256
6 dB 8.310 0.179 0.212 0.232 0.180 0.279

Minimum value of Cllr (Cmin
llr )

Dev Clean 0.134 0.134 0.130 0.129 0.130 0.129

I4U 15 dB 0.066 0.066 0.057 0.057 0.058 0.058
6 dB 0.102 0.102 0.089 0.088 0.092 0.087

Eval Clean 0.113 0.113 0.102 0.105 0.106 0.104

I4U 15 dB 0.052 0.052 0.034 0.036 0.037 0.039
6 dB 0.086 0.086 0.057 0.061 0.065 0.064

Eval Clean 0.163 0.163 0.163 0.266 0.188 0.244

SRE’12 15 dB 0.119 0.119 0.129 0.135 0.122 0.145
6 dB 0.163 0.163 0.173 0.180 0.165 0.194

Mis-calibration cost (Cmc )

Dev Clean 4.239 0.061 0.054 0.054 0.062 0.050

I4U 15 dB 2.852 0.013 0.013 0.013 0.013 0.011
6 dB 5.998 0.014 0.011 0.011 0.011 0.011

Eval Clean 2.932 0.057 0.046 0.051 0.055 0.068

I4U 15 dB 1.661 0.029 0.044 0.051 0.036 0.071
6 dB 4.251 0.018 0.032 0.037 0.023 0.052

Eval Clean 10.936 0.031 0.137 0.335 0.118 0.262

SRE’12 15 dB 5.080 0.014 0.054 0.064 0.023 0.111
6 dB 8.147 0.016 0.039 0.052 0.016 0.085

Equal error rate (E= ) in %

Dev Clean 3.43 3.43 3.34 3.33 3.33 3.32

I4U 15 dB 1.65 1.65 1.35 1.35 1.40 1.36
6 dB 2.53 2.53 2.25 2.24 2.33 2.17

Eval Clean 2.78 2.78 2.50 2.53 2.55 2.56

I4U 15 dB 1.27 1.27 0.80 0.81 0.86 0.93
6 dB 2.21 2.21 1.39 1.48 1.57 1.64

Eval Clean 4.22 4.22 4.36 7.19 5.01 6.43

SRE’12 15 dB 2.85 2.85 3.15 3.31 2.88 3.67
6 dB 4.14 4.14 4.40 4.47 4.12 5.11

Primary cost for NIST SRE’12 (Cprimary )

Dev Clean 0.219 0.219 0.173 0.177 0.205 0.171

I4U 15 dB 0.155 0.155 0.153 0.154 0.152 0.163
6 dB 0.249 0.249 0.235 0.240 0.236 0.252

Eval Clean 0.174 0.174 0.204 0.381 0.236 0.382

I4U 15 dB 0.148 0.148 0.135 0.137 0.133 0.160
6 dB 0.254 0.254 0.205 0.215 0.205 0.258

Eval Clean 0.393 0.393 0.485 1.000 0.693 1.000

SRE’12 15 dB 0.340 0.340 0.371 0.377 0.343 0.411
6 dB 0.456 0.456 0.484 0.494 0.451 0.533

* N.A. : Not applicable or no-calibration performed
** O : Conventional linear calibration using w0 and w1
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Fig. 2. Distributions of active speech duration from utterances in the
I4U and NIST SRE’12 trials.

not seem to give better performance than the linear calibration. To
better understand why this is happening, we had a look into the dura-
tion distributions of I4U and NIST SRE’12 segments in more details.

In Figure 2, the duration distributions of utterances included in
the I4U and NIST SRE’12 lists are depicted. The durations in the
plot is the durations of active speech samples for each utterances
after the SAD applied. As can be seen from Figure 2, there is quite a
difference between the duration distribution of utterance in the I4U
and NIST SRE’12 trials lists. The duration distribution of I4U trials
list is more concentrated with mean around 90 s of active speech,
while the distribution of NIST SRE’12 trials list is more distributed
across all duration with a lot of weight in the short duration region.

The difference in range and distribution of duration between the
development and Eval-SRE’12 set may be a cause for the QMFs not
working very well, but more likely, the ‘data set shift’ that occurs
with every NIST evaluation may be the most important reason. In-
deed, the absolute error rates have gone up strongly from Dev-I4U
and Eval-I4U to Eval-SRE’12. The subtle changes to the calibra-
tion that the QMFs try to make may be lost in the dramatic changes
that take place when the data set changes as drastically as it did in
going from SRE’10 to SRE’12—despite the fact that all speakers
were known in advance. We have some hope, however, that we will
be able to get calibration more in line with the SRE’12 material by
looking at other quality factors as well.

7. CONCLUSION

Using our development set Dev-I4U to calibrate both the develop-
ment (self-calibration) and our evaluation set Eval-I4U, the QMF
calibration approaches provide a significant performance improve-
ment in both discrimination and calibration. This is observed in all
performance metrics used to measures the performance. By adding
one or two extra parameters in calibration via the QMF approaches,
the system performance based on E= improves by 37 % relative to
linear calibration without QMF. However, from the calibration re-
sults on the Eval-SRE’12 set using Pknown = 0, this does not hold.
We surmised that in applying a QMF, it is important that the devel-
opment set matches the evaluation set in terms of duration range and
distribution, so that it can give a positive improvement in the system
performance. From the problem revealed by the different duration
conditions in the Eval-SRE’12 set from the Dev-I4U set for train-
ing calibration, our future works include the truncation utterances
from the development set or simulate the duration effect such that it
can be used to better model the duration distribution in the SRE’12
evaluation set.
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